This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067707 #42 Feb 16 2025 08:32:45 %S A067707 15,36,63,96,135,180,231,288,351,420,495,576,663,756,855,960,1071, %T A067707 1188,1311,1440,1575,1716,1863,2016,2175,2340,2511,2688,2871,3060, %U A067707 3255,3456,3663,3876,4095,4320,4551,4788,5031,5280,5535,5796,6063,6336,6615,6900 %N A067707 a(n) = 3*n^2 + 12*n. %C A067707 Numbers k such that 12*(12 + k) is a perfect square. %C A067707 a(n) is the second Zagreb index of the gear graph g[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The gear graph g[n] is defined as a wheel graph with n+1 vertices with a vertex added between each pair of adjacent vertices of the outer cycle. - _Emeric Deutsch_, Nov 09 2016 %H A067707 Vincenzo Librandi, <a href="/A067707/b067707.txt">Table of n, a(n) for n = 1..1000</a> %H A067707 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GearGraph.html">Gear Graph</a>. %H A067707 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A067707 G.f.: 3*x*(5 - 3*x)/(1 - x)^3. - _Vincenzo Librandi_, Jul 07 2012 %F A067707 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - _Vincenzo Librandi_, Jul 07 2012 %F A067707 E.g.f.: 3*x*(x + 5)*exp(x). - _G. C. Greubel_, Jul 20 2017 %F A067707 From _Amiram Eldar_, Feb 26 2022: (Start) %F A067707 Sum_{n>=1} 1/a(n) = 25/144. %F A067707 Sum_{n>=1} (-1)^(n+1)/a(n) = 7/144. (End) %t A067707 Select[ Range[10000], IntegerQ[ Sqrt[ 12(12 + # )]] & ] %t A067707 CoefficientList[Series[3*(5-3*x)/(1-x)^3,{x,0,50}],x] (* _Vincenzo Librandi_, Jul 07 2012 *) %o A067707 (PARI) a(n)=3*n*(n+4) \\ _Charles R Greathouse IV_, Dec 07 2011 %o A067707 (Magma) [3*n^2 + 12*n: n in [1..50]]; // _Vincenzo Librandi_, Jul 07 2012 %Y A067707 Cf. A067724 (5), A067725 (3), A067726 (6), A067727 (7), A067728, A067705 (11). %K A067707 nonn,easy %O A067707 1,1 %A A067707 _Robert G. Wilson v_, Feb 05 2002