cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067735 Number of partitions of 2^n into distinct parts.

This page as a plain text file.
%I A067735 #16 Dec 27 2018 14:52:40
%S A067735 1,1,2,6,32,390,16444,4013544,11784471548,1168225267521350,
%T A067735 16816734263788624008200,276565526698898057002583240473088,
%U A067735 96052644365764024805972019009272150642974291708,43586702014259316987395017345466711329303914541873541942193666197800
%N A067735 Number of partitions of 2^n into distinct parts.
%C A067735 Always even for n>1 since the only powers of two which are generalized pentagonal numbers (A001318 - needed to produce odd numbers of partitions into distinct terms) are 2^0 and 2^1. Number of digits of A068413 divided by number of digits of a(n) approaches sqrt(2).
%H A067735 Alois P. Heinz, <a href="/A067735/b067735.txt">Table of n, a(n) for n = 0..14</a>
%H A067735 Henry Bottomley, <a href="http://www.se16.info/js/partitions.htm">Partition calculators using java applets</a>
%H A067735 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A067735 a(n) = A000009(A000079(n)).
%F A067735 a(n) ~ exp(Pi*sqrt(2^n/3))/(3^(1/4)*2^(3*n/4+2)). - _Ilya Gutkovskiy_, Jan 13 2017
%e A067735 a(3)=6 since 2^3=8 can be partitioned into 8, 7+1, 6+2, 5+3, 5+2+1, or 4+3+1.
%t A067735 Table[ PartitionsQ[2^n], {n, 0, 13}]
%Y A067735 Cf. A000009, A000079, A068413.
%K A067735 nonn
%O A067735 0,3
%A A067735 _Henry Bottomley_, Mar 11 2002