This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067855 #79 Feb 16 2025 08:32:45 %S A067855 1,2,8,26,94,326,1196,4358,16248,60854,230184,874878,3343614,12825418, %T A067855 49368388,190554410,737328366,2858974502,11106267880,43215101102, %U A067855 168398785002,657070401106,2566847255572,10038191414610,39295007540748 %N A067855 Square of the Euclidean length of the vector of Littlewood-Richardson coefficients of Sum_{lambda |- n} s_lambda^2, where s_lambda are the symmetric Schur functions and the sum runs over all partitions lambda of n. %C A067855 Original name: "Squared length of sum of s_lambda^2, where s_lambda is a Schur function and lambda ranges over all partitions of n." %C A067855 This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/2, g(n) = 4. - _Seiichi Manyama_, Apr 22 2018 %C A067855 The symbol "|-" means "is a partition of", cf. MathWorld link and the Geloun & Ramgoolam paper. The Littlewood-Richardson coefficients allow a product of two Schur functions to be expressed as a linear combination of Schur functions of the corresponding degree. (The Schur functions symmetric in all n variables correspond to Schur polynomials of partitions extended with 0's to length n.) - _M. F. Hasler_, Jan 19 2020 %C A067855 See A070933 for similar sums of squares of Littlewood-Richardson coefficients. - _M. F. Hasler_, Jan 20 2020 %H A067855 Seiichi Manyama, <a href="/A067855/b067855.txt">Table of n, a(n) for n = 0..1000</a> %H A067855 J. B. Geloun and S. Ramgoolam, <a href="http://arxiv.org/abs/1307.6490">Counting Tensor Model Observables and Branched Covers of the 2-Sphere</a>, arXiv preprint arXiv:1307.6490 [hep-th], 2013. %H A067855 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Partition.html">Partition</a>. %H A067855 Wikipedia, <a href="https://en.wikipedia.org/wiki/Littlewood-Richardson_rule">Littlewood-Richardson rule</a>, as of Dec 18 2018. %H A067855 Wikipedia, <a href="https://en.wikipedia.org/wiki/Schur_polynomial">Schur polynomial</a>, as of Jan 13 2020. %F A067855 G.f.: 1/sqrt(Product_{i >= 1} (1 - 4*x^i)). %F A067855 Euler transform of A001868(n)/2. a(n) = Sum_{pi} Product_{m=1..n} binomial(2*p(m), p(m)), where pi runs through all nonnegative solutions of p(1) + 2*p(2) + ... + n*p(n)=n. - _Vladeta Jovovic_, Mar 25 2006 %F A067855 a(n) ~ 2^(2*n) / sqrt(c*Pi*n), where c = QPochhammer[1/4] = 0.688537537120339... - _Vaclav Kotesovec_, Apr 22 2018 %F A067855 By definition, a(n) = Sum_{mu |- 2n} c_mu^2 where Sum_{lambda |- n} s_lambda^2 = Sum_{mu |- 2n} c_mu s_mu, where s_lambda are the Schur polynomials (symmetric in 2n variables) and the sums run over all partitions of n resp. 2n. - _M. F. Hasler_, Jan 19 2020 %e A067855 For n=3 the s_lambda^2 summed over all partitions of n and decomposed into a sum of Schur functions yields %e A067855 s(6) + 2 s(3,3) + 2 s(4,2) + s(5,1) + 2 s(2,2,2) + 2 s(3,2,1) + s(4,1,1) %e A067855 + 2 s(2,2,1,1) + s(3,1,1,1) + s(2,1,1,1,1) + s(1,1,1,1,1,1), %e A067855 and the sum of the squares of the coefficients {1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1} gives a(3) = 26. %p A067855 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, %p A067855 binomial(n+n, n), add(b(j, 1)*b(n-i*j, i-1), j=0..n/i))) %p A067855 end: %p A067855 a:= n-> b(n$2): %p A067855 seq(a(n), n=0..33); # _Alois P. Heinz_, Aug 24 2019 %t A067855 Table[Tr[(Apply[List, %t A067855 Sum[Tr[s @@@ LRRule[\[Lambda], \[Lambda]]], %t A067855 {\[Lambda], Partitions[n]}]] /. s[__] -> 1)^2], {n, 1, 10}]; %t A067855 (* with 'LRRule' defined in http://users.telenet.be/Wouter.Meeussen/ToolBox.nb - _Wouter Meeussen_, Jan 19 2020 *) %t A067855 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Binomial[n+n, n], %t A067855 Sum[b[j, 1]*b[n - i*j, i-1], {j, 0, n/i}]]]; %t A067855 a[n_] := b[n, n]; %t A067855 Table[a[n], {n, 0, 33}] (* _Jean-François Alcover_, Jan 02 2022, after _Alois P. Heinz_ *) %o A067855 (PARI) A067855_upto(N)=Vec(1/sqrt(prod(i=1,N-1,1-4*'x^i+O('x^N)))) \\ _M. F. Hasler_, Jan 23 2020 %Y A067855 Cf. A001868. %Y A067855 List of partitions: A036037, A080577, A181317, A330370. %Y A067855 Cf. A070933 (Sum_{lambda,mu,nu} (c^{lambda}_{mu,nu})^2, |mu| = |nu| = n). %Y A067855 Cf. A003040 (maximum number of standard tableaux of the Ferrers diagrams of the partitions of n). %K A067855 easy,nonn %O A067855 0,2 %A A067855 _Richard Stanley_, Feb 15 2002 %E A067855 More terms from _Vladeta Jovovic_, Mar 25 2006 %E A067855 Name edited by _M. F. Hasler_ following observations by _Wouter Meeussen_, Jan 17 2020