cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067858 J_n(n), where J is the Jordan function, J_n(n) = n^n product{p|n}(1 - 1/p^n), the product is over the distinct primes, p, dividing n.

This page as a plain text file.
%I A067858 #18 Jan 09 2015 07:59:51
%S A067858 1,3,26,240,3124,45864,823542,16711680,387400806,9990233352,
%T A067858 285311670610,8913906892800,302875106592252,11111328602468784,
%U A067858 437893859848932344,18446462598732840960,827240261886336764176,39346257879101671328376,1978419655660313589123978
%N A067858 J_n(n), where J is the Jordan function, J_n(n) = n^n product{p|n}(1 - 1/p^n), the product is over the distinct primes, p, dividing n.
%H A067858 Alois P. Heinz, <a href="/A067858/b067858.txt">Table of n, a(n) for n = 1..350</a>
%F A067858 J_n(n) = sum{k|n} mu(n/k) k^n, where mu() is the Moebius function.
%p A067858 with(numtheory):
%p A067858 a:= n-> n^n*mul(1-1/p^n, p=factorset(n)):
%p A067858 seq(a(n), n=1..20);  # _Alois P. Heinz_, Jan 09 2015
%t A067858 JordanTotient[n_,k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n]; A067858[n_]:=JordanTotient[n,n]; Array[A067858,20]
%Y A067858 Main diagonal of A059379, A059380.
%K A067858 nonn
%O A067858 1,2
%A A067858 _Leroy Quet_, Feb 15 2002