cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067865 Numbers n such that n and 2^n end with the same two digits.

This page as a plain text file.
%I A067865 #18 Jun 17 2017 03:04:36
%S A067865 36,136,236,336,436,536,636,736,836,936,1036,1136,1236,1336,1436,1536,
%T A067865 1636,1736,1836,1936,2036,2136,2236,2336,2436,2536,2636,2736,2836,
%U A067865 2936,3036,3136,3236,3336,3436,3536,3636,3736,3836,3936,4036,4136,4236,4336
%N A067865 Numbers n such that n and 2^n end with the same two digits.
%C A067865 2^36=68719476736 hence 36 is in the sequence.
%H A067865 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A067865 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A067865 a(n) = 36+100(n-1).
%F A067865 a(n) = 2*a(n-1)-a(n-2). G.f.: 4*x*(9+16*x)/(1-x)^2. [_Colin Barker_, Dec 01 2012]
%o A067865 (PARI) isok(n) = (2^n - n) % 100 == 0; \\ _Michel Marcus_, Nov 23 2013
%Y A067865 Cf. A064541.
%Y A067865 Subsequence of A067844.
%K A067865 easy,nonn,base
%O A067865 1,1
%A A067865 _Benoit Cloitre_, Mar 07 2002