cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067948 Triangle of labeled rooted trees according to the number of increasing edges.

This page as a plain text file.
%I A067948 #50 Jun 26 2024 19:34:21
%S A067948 1,1,1,2,5,2,6,26,26,6,24,154,269,154,24,120,1044,2724,2724,1044,120,
%T A067948 720,8028,28636,42881,28636,8028,720,5040,69264,319024,655248,655248,
%U A067948 319024,69264,5040,40320,663696,3793212,10095228,13861809,10095228,3793212,663696,40320
%N A067948 Triangle of labeled rooted trees according to the number of increasing edges.
%C A067948 Each line is symmetric.
%C A067948 The sum of each line is n^(n-1), A000169.
%C A067948 The outer diagonal is (n-1)!, A000142.
%C A067948 The next-to-last diagonal is A001705.
%H A067948 Alois P. Heinz, <a href="/A067948/b067948.txt">Rows n = 1..141, flattened</a>
%H A067948 Brian Drake, <a href="http://people.brandeis.edu/~gessel/homepage/students/drakethesis.pdf">An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.7.2)</a>, A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
%H A067948 Ira M. Gessel and Seunghyun Seo, <a href="https://doi.org/10.37236/1884">A refinement of Cayley's formula for trees</a>, Electronic J. Combin. 11, no. 2 (2004-6) (The Stanley Festschrift volume).
%H A067948 A. M. Khidr and B. S. El-Desouky, <a href="http://dx.doi.org/10.1016/S0195-6698(84)80018-9">A symmetric sum involving the Stirling numbers of the first kind</a>, European J. Combin., 5 (1984), 51-54.
%F A067948 G.f. of row n: Sum_{k=0..n-1} T(n, k) x^k = Product_{i=1..n-1} (n - i + i*x).
%F A067948 From _Peter Bala_, Sep 29 2011: (Start)
%F A067948 E.g.f.: Compositional inverse of (exp(x) - exp(x*t))/((1 - t)*exp(x*(1 + t))) = x + (1 + t)*x^2/2! + (2 + 5*t + 2*t^2)*x^3/3! + ...
%F A067948 Let f(x,t) = (1 - t)/(exp(-x) - t*exp(-x*t)) and let D be the operator f(x,t)*d/dx. Then the (n+1)-th row generating polynomial equals (D^n)(f(x,t)) evaluated at x = 0. See [Drake, example 1.7.2] for the combinatorial interpretation of this table in terms of labeled trees. (End)
%e A067948 Triangle starts:
%e A067948    1;
%e A067948    1,   1;
%e A067948    2,   5,   2;
%e A067948    6,  26,  26,   6;
%e A067948   24, 154, 269, 154,  24;
%e A067948   ...
%e A067948 From _Bruno Berselli_, Jan 12 2021: (Start)
%e A067948 The rows of the triangle are the coefficients of the following polynomials:
%e A067948 1: 1;
%e A067948 2: 1*x+1;
%e A067948 3: (x+2)*(2*x+1) = 2*x^2 + 5*x + 2;
%e A067948 4: (x+3)*(2*x+2)*(3*x+1) = 6*x^3 + 26*x^2 + 26*x + 6;
%e A067948 5: (x+4)*(2*x+3)*(3*x+2)*(4*x+1) = 24*x^4 + 154*x^3 + 269*x^2 + 154*x + 24, etc.
%e A067948 (End)
%p A067948 b:= proc(n) option remember;
%p A067948       expand(x*mul(n-k+k*x, k=1..n-1))
%p A067948     end:
%p A067948 T:= (n, k)-> coeff(b(n), x, k):
%p A067948 seq(seq(T(n,k), k=1..n), n=1..10);  # _Alois P. Heinz_, Jun 26 2024
%t A067948 L := CoefficientList[InverseSeries[Series[(Exp[-x y] + Sinh[x] - Cosh[x])/(1 - y), {x, 0, 8}]], {x}]; Table[CoefficientList[L, y][[n + 1]] n!, {n, 1, 8}] // Flatten (* _Peter Luschny_, Jun 23 2018 *)
%Y A067948 Cf. A000142, A000169, A001705.
%K A067948 nonn,tabl
%O A067948 1,4
%A A067948 Cedric Chauve (chauve(AT)lacim.uqam.ca), Mar 19 2002