This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067951 #19 Sep 13 2016 12:03:40 %S A067951 1,1,2,3,6,7,17,18,42,60,110,111,341,342,702,1154,2240,2241,6037,6038, %T A067951 15580,22320,38012,38013,122544,138125,261012,389594,796173,796174, %U A067951 2259345,2259346,5439649,7737007,13178898,16234417,45367492,45367493 %N A067951 a(0) = 1; a(n) = Sum_{1 <= k <= n and k|n} a(n-k). %C A067951 With offset 1, eigensequence of triangle A113998. - _Gary W. Adamson_, Sep 12 2016 %C A067951 a(n) = a(n-1)+1 iff n is prime. - _Robert Israel_, Sep 13 2016 %H A067951 Robert Israel, <a href="/A067951/b067951.txt">Table of n, a(n) for n = 0..4680</a> %p A067951 f:=proc(n) option remember; %p A067951 add(procname(n-k), k=numtheory:-divisors(n)) %p A067951 end proc: %p A067951 f(0):= 1: %p A067951 seq(f(n),n=0..50); # _Robert Israel_, Sep 13 2016 %t A067951 a[0] = 1; a[n_] := a[n] = Sum[a[n - k], {k, Divisors@ n}]; Table[a@ n, {n, 0, 37}] (* _Michael De Vlieger_, Sep 13 2016 *) %o A067951 (PARI) a(n)=if (n==0, return(1)); my(an = 0); fordiv(n, k, an += a(n-k)); an; \\ _Michel Marcus_, Jul 14 2013 %Y A067951 Cf. A113998. %K A067951 easy,nonn %O A067951 0,3 %A A067951 _Naohiro Nomoto_, Mar 07 2002