This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A067957 #25 May 12 2024 06:47:46 %S A067957 1,1,1,2,2,4,5,7,7,24,22,29,39,67,55,386,235,312,347,451,1319,5320, %T A067957 3220,4489,20237,36580,52875,197103,216562,289478,567396,659647, %U A067957 1111153,3131774,2200426,29523302,34214028,48161995,32616148,242860900,293579041,363415618 %N A067957 Number of divisor chains of length n: permutations s_1,s_2,...,s_n of 1,2,...,n such that for all j=1,2,...,n, s_j divides Sum_{i=1..j} s_i. %C A067957 Apparently this sequence originated in a problem composed by Matthijs Coster in 2002. %C A067957 Let M = floor(n/2), then the following permutations always work: for n even: M+1, 1, M+2, 2, ..., n-1, M-1, n, M; for n odd: M+1, 1, M+2, 2, ..., M-1, n-1, M, n. - Daniel Asimov, May 04 2004 %H A067957 Matthijs Coster, <a href="http://www.coster.demon.nl/sequences/index.html">Sequences</a> %H A067957 Matthijs Coster, <a href="http://www.nieuwarchief.nl/serie5/pdf/naw5-2002-03-1-092.pdf">Problem 2001/3-A of the Universitaire Wiskunde Competitie</a>, Nieuw Arch. Wisk. 5/3 (2002), 92-94. %e A067957 Examples of divisor chains of lengths 1 through 9: %e A067957 1 %e A067957 2 1 %e A067957 3 1 2 %e A067957 4 2 3 1 %e A067957 5 1 2 4 3 %e A067957 6 2 4 3 5 1 %e A067957 7 1 2 5 3 6 4 %e A067957 8 2 5 3 6 4 7 1 %e A067957 8 4 3 5 1 7 2 6 9 %e A067957 The five divisor chains of length 6 are: %e A067957 4 1 5 2 6 3 %e A067957 4 2 6 3 5 1 %e A067957 5 1 2 4 6 3 %e A067957 5 1 6 4 2 3 %e A067957 6 2 4 3 5 1. - Eugene McDonnell, May 21 2004 %Y A067957 Cf. A093313, A093314, A093315, A094097, A094098, A094099. %K A067957 nonn %O A067957 0,4 %A A067957 _Floor van Lamoen_, Mar 06 2002 %E A067957 a(31)-a(35) from _Jud McCranie_, May 06 2004 %E A067957 a(0)=1 prepended by _Alois P. Heinz_, Aug 26 2017 %E A067957 a(36)-a(41) from _Zhao Hui Du_, May 12 2024