cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067965 Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.

This page as a plain text file.
%I A067965 #42 Jul 26 2025 03:18:14
%S A067965 2,9,119,2704,177073,21836929,6985036032,4576976735769,
%T A067965 7263963336910751,24830487842030082304,198126078679714777857441,
%U A067965 3494153303407491549112098721,141264727800378056245286463971328,12779122891585386852029424628087941481,2628141044813862018744988536642011269669959
%N A067965 Number of binary arrangements without adjacent 1's on n X n array connected ne-sw and nw-se.
%H A067965 Liang Kai, <a href="/A067965/b067965.txt">Table of n, a(n) for n = 1..27</a> (first 19 terms from Vaclav Kotesovec)
%H A067965 Vaclav Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, p. 69, 417.
%e A067965 Neighbors for n=4 (dots represent spaces):
%e A067965 . o..o..o..o
%e A067965 ...\/ \/ \/
%e A067965 .../\ /\ /\
%e A067965 . o..o..o..o
%e A067965 ...\/ \/ \/
%e A067965 .../\ /\ /\
%e A067965 . o..o..o..o
%e A067965 ...\/ \/ \/
%e A067965 .../\ /\ /\
%e A067965 . o..o..o..o
%Y A067965 Main diagonal of A181212.
%Y A067965 Cf. circle A000204, line A000045, arrays: e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, n-s A067961, e-w n-s A027683, e-w ne-sw n-s A066866.
%Y A067965 Cf. A201861, A212271.
%K A067965 nonn,nice,hard
%O A067965 1,1
%A A067965 _R. H. Hardin_, Feb 02 2002
%E A067965 Term a(14) from _Vaclav Kotesovec_, Dec 06 2011
%E A067965 Term a(15) from _Vaclav Kotesovec_, Jan 03 2012
%E A067965 Term a(16) from _Vaclav Kotesovec_, May 01 2012
%E A067965 Term a(17)-a(18) from _Vaclav Kotesovec_, Aug 13 2016