cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067969 Number of nodes in virtual, "optimal", chordal graphs of diameter 5, degree =n+1.

Original entry on oeis.org

11, 20, 61, 102, 231, 360, 681, 1002, 1683, 2364, 3653, 4942, 7183, 9424, 13073, 16722, 22363, 28004, 36365, 44726, 56695, 68664, 85305, 101946, 124515, 147084, 177045, 207006, 246047, 285088, 335137, 385186, 448427, 511668, 590557, 669446
Offset: 1

Views

Author

S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 11 2002

Keywords

Examples

			a(5)=231 n=odd, t=3, a(5)=324/5+54+72+30+46/5+1=231 a(6)=360 n=even, t=3, a(6)=231+(24*16)/3+1=231+128+1=360
		

References

  • Concrete Mathematics - R. L. Graham, D. E. Knuth, O. Patashnik, 1994,Addison-Wesley Company, Inc.

Crossrefs

Cf. A001847 (bisection), A035599 (bisection).

Programs

  • Maple
    for n from 1 to k do if ((n mod 2 ) = 1) then t := (n+1)/2; a[n] := 4/15*t^5+2/3*t^4+8/3*t^3+10/3*t^2+46/15*t+1; else t := n/2; a[n] := ((4/15*t^5+2/3*t^4+8/3*t^3+10/3*t^2+46/15*t+1)+((2*(t*(t+1)*(t^2+t+4))/3)+1)); fi; print(a[n]); od;

Formula

n - odd: t=(n+1)/2, a[n] := 4/15*t^5+2/3*t^4+8/3*t^3+10/3*t^2+46/15*t+1; n - even: t=n/2, a(n) := (4/15*t^5+2/3*t^4+8/3*t^3+10/3*t^2+46/15*t+1)+((2*(t*(t+1)*(t^2+t+4))/3)+1)
G.f.: x*(11-2*x-12*x^2+8*x^3+26*x^4-12*x^5-12*x^6+8*x^7+3*x^8-2*x^9)/ ((1+x)^4 * (x-1)^6) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 28 2009]
(n+1)*a(n) -2*a(n-1) -18*a(n-2) -2*a(n-3) +(-n+1)*a(n-4)=0. - R. J. Mathar, Apr 07 2025

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.