cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067990 Triangle A067979 with rows read backwards.

Original entry on oeis.org

1, 6, 3, 17, 13, 4, 38, 31, 19, 7, 80, 69, 48, 32, 11, 158, 140, 107, 79, 51, 18, 303, 274, 220, 176, 127, 83, 29, 566, 519, 432, 360, 283, 206, 134, 47, 1039, 963, 822, 706, 580, 459, 333, 217, 76, 1880, 1757, 1529, 1341, 1138, 940, 742, 539, 351, 123, 3364, 3165, 2796, 2492, 2163, 1844, 1520, 1201
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

The column m (without leading 0's) gives the convolution of Lucas numbers {L(n+1) := A000204(n+1)}, n>=0, with those with m-shifted index: a(n+m,m)=sum(L(k+1)*L(m+n+1-k),k=0..n), n>=0,m=0,1,...
The columns give A004799(n-1), A067980-7 for m= 0..8, respectively. Row sums give A067989.
The row polynomials p(n,x) := sum(a(n,m)*x^m,m=0..n) are generated by A(z)*(A(z)-x*A(x*z))/(1-x), with A(x) := (1+2*x)/(1-x-x^2) (g.f. for Lucas {L(n+1)}).

Examples

			{1}; {6,3}; {17,13,4}; {38,31,19,7}; ...; p(2,x)=17+13*x+4*x^2.
		

Programs

  • Mathematica
    Reverse /@ Table[Sum[LucasL[k + 1] LucasL[n - k + 1], {k, 0, m}], {n, 0, 11}, {m, 0, n}] // Flatten (* Michael De Vlieger, Apr 11 2016 *)

Formula

a(n, m)=A067330(n, n-m), n>=m>=0, else 0.
a(n, m)=(n-m+1)*L(m+1)*F(n-m)+((n-m+1)*L(m+1)+(n-m)*L(m))*F(n-m+1), n>=m>=0, else 0; with F(n) := A000045(n)(Fibonacci) and L(n) := A000032(n) (Lucas).
G.f. for column m=0, 1, ...: (x^m)*(L(m+1)+L(m)*x)*(1+2*x)/(1-x-x^2)^2.
a(n, m) = -(-1)^m*F(n-2*m+1)-m*L(n+2)+n*L(n+2)+F(n+3), with F(-n) = (-1)^(n+1)*F(n), hence a(n, m) = -5*A067418(n, m)+2*(n-m+1)*L(n+2), n>=m>=0. - Ehren Metcalfe, Apr 11 2016