This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068011 #28 May 02 2025 15:20:39 %S A068011 1,1,1,2,4,8,14,26,52,104,208,412,820,1640,3280,6560,13112,26216, %T A068011 52432,104864,209728,419440,838864,1677728,3355456,6710912,13421792, %U A068011 26843552,53687104,107374208,214748416,429496768,858993472,1717986944,3435973888,6871947776 %N A068011 Number of subsets of {1,2,3,...,n} that sum to 0 mod 5. %C A068011 For n>2, a(n) = 2 * A068031(n). %H A068011 Sophie LeBlanc, Jan 20 2002, <a href="http://groups.google.com/groups?hl=en&selm=85962b5a.0201201247.4aa79c5c%40posting.google.com">sci.math posting</a> %H A068011 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,0,0,2,-4). %F A068011 a(k+1) = 2*a(k) if k == 2, 3, or 4 mod 5, 2*a(k)-2^(k/5) if k == 0 mod 5, 2*a(k)-2^((k-1)/5) if k == 1 mod 5. %F A068011 G.f.: -(x^2-x+1)*(2*x^3+2*x^2-1) / ((2*x-1)*(2*x^5-1)). - _Colin Barker_, Dec 22 2012 %F A068011 If n == 0 mod 5, then a(n) = (2^n + 4*2^(n/5))/5. - _Giorgos Kalogeropoulos_, May 02 2025 %F A068011 a(n) ~ 2^n/5. - _Stefano Spezia_, May 02 2025 %p A068011 A068011_rec := proc(n); if(0 = n) then RETURN(1); fi; if(1 = (n mod 5)) then RETURN(2*A068011_rec(n-1)-2^((n-1)/5)); fi; if(2 = (n mod 5)) then RETURN(2*A068011_rec(n-1)-2^((n-2)/5)); fi; RETURN(2*A068011_rec(n-1)); end; %p A068011 # second Maple program: %p A068011 b:= proc(n, s) option remember; `if`(n=0, `if`(s=0, 1, 0), %p A068011 b(n-1, s)+b(n-1, irem(s+n, 5))) %p A068011 end: %p A068011 a:= n-> b(n, 0): %p A068011 seq(a(n), n=0..35); # _Alois P. Heinz_, May 02 2025 %t A068011 LinearRecurrence[{2, 0, 0, 0, 2, -4}, {1, 1, 1, 2, 4, 8}, 40] (* _Jean-François Alcover_, Mar 06 2016 *) %Y A068011 5th row of A068009. %K A068011 nonn %O A068011 0,4 %A A068011 _Antti Karttunen_, Feb 11 2002