cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068014 Nonprimes n such that 1+phi(n) and -1 + sigma(n) are prime numbers.

This page as a plain text file.
%I A068014 #18 Dec 30 2017 13:11:12
%S A068014 6,10,14,21,26,34,38,40,46,55,57,58,60,63,74,76,86,88,93,111,114,117,
%T A068014 118,124,126,135,145,153,158,166,178,184,186,190,194,198,206,208,209,
%U A068014 216,221,224,230,232,238,250,252,254,260,266,270,278,280,295,297,298
%N A068014 Nonprimes n such that 1+phi(n) and -1 + sigma(n) are prime numbers.
%C A068014 1+A000010(n) and -1+A000203(n) are primes but n is nonprime.
%H A068014 Michael De Vlieger, <a href="/A068014/b068014.txt">Table of n, a(n) for n = 1..10000</a>
%e A068014 For n = 38, phi(38) + 1 = 19 and sigma(38) - 1 = 1 + 2 + 19 + 38 - 1 = 59. [corrected by _Peter Munn_, Dec 30 2017]
%t A068014 Do[s=-1+DivisorSigma[1, n]; s1=1+EulerPhi[n]; If[PrimeQ[s]&&PrimeQ[s1]&&!PrimeQ[n], Print[{n, s1, s}]], {n, 1, 1000}] (* generates sequence and related primes too *)
%t A068014 Select[Range@ 300, And[CompositeQ@ #, AllTrue[{1 + EulerPhi@ #, -1 + DivisorSigma[1, #]}, PrimeQ]] &] (* _Michael De Vlieger_, Dec 29 2017 *)
%o A068014 (PARI) isok(n) = !isprime(n) && isprime(1+eulerphi(n)) && isprime(sigma(n)-1); \\ _Michel Marcus_, Dec 29 2017
%Y A068014 Cf. A000010, A000203, A058339, A058340, A066071, A066072, A066073, A066074, A066075, A066076, A066077, A066080.
%K A068014 nonn
%O A068014 1,1
%A A068014 _Labos Elemer_, Feb 08 2002