This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068016 #16 Apr 22 2021 17:56:35 %S A068016 23,37,67,233,277,631,1039,1283,1297,1307,1613,1693,1709,2099,2137, %T A068016 2333,2719,2797,3271,3533,3547,3571,3923,4027,4253,4523,4643,4793, %U A068016 5483,5507,5647,6563,7321,8831,8849,9007,9029,10061,10079,10289,10513,12049,13687 %N A068016 Lonely non-twin primes: non-twins sandwiched between two pairs of twins. %H A068016 Zak Seidov, <a href="/A068016/b068016.txt">Table of n, a(n) for n = 1..1000</a> %H A068016 Brian Hopkins, <a href="http://ecajournal.haifa.ac.il/Volume2021/ECA2021_S1H1.pdf">Euler's Enumerations</a>, Enumerative Combinatorics and Applications (2021) Vol. 1, No. 1, Article #S1H1. %e A068016 37 is in the sequence because it is adjacent to two pairs of twins (29,31 and 41,43). 47 is not because the primes adjacent to it are 43 and 53 and although 43 is a twin, 53 is not. %t A068016 PrimeNext[n_]:=Module[{k},k=n+1;While[ !PrimeQ[k],k++ ];k]; PrimePrev[n_]:=Module[{k},k=n-1;While[ !PrimeQ[k],k-- ];k]; lst={};Do[p=Prime[n];If[ !PrimeQ[p-2]&&PrimeQ[PrimePrev[p]-2]&&!PrimeQ[p+2]&&PrimeQ[PrimeNext[p]+2],AppendTo[lst,p]],{n,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jul 22 2009 *) %t A068016 m = 2000; #[[3]] & /@ Select[Partition[Prime[Range[7, m]], 5, 1], #[[2]] - #[[1]] == #[[5]] - #[[4]] == 2 &] (* _Zak Seidov_, Nov 25 2012 *) %Y A068016 Cf. A001097, A069453. %K A068016 nonn %O A068016 1,1 %A A068016 _Neil Fernandez_, Mar 22 2002 %E A068016 More terms from _Vladimir Joseph Stephan Orlovsky_, Dec 04 2009