This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068028 #73 Mar 22 2025 06:36:31 %S A068028 3,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2, %T A068028 8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1, %U A068028 4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8,5,7,1,4 %N A068028 Decimal expansion of 22/7. %C A068028 This is an approximation to Pi. It is accurate to 0.04025%. %C A068028 Consider the recurring part of 22/7 and the sequences R(i) = 2, 1, 4, 2, 3, 0, 2, ... and Q(i) = 1, 4, 2, 8, 5, 7, 1, .... For i > 0, let X(i) = 10*R(i) + Q(i). Then Q(i+1) = floor(X(i)/Y); R(i+1) = X(i) - Y*Q(i+1); here Y=5; X(0)=X=7. Note 1/7 = 7/49 = X/(10*Y-1). Similar comment holds elsewhere. If we consider the sequences R(i) = 3, 2, 3, 5, 5, 1, 4, 0, 6, 4, 6, 3, 4, 3, 1, 1, 5, 2, 6, 0, 2, 0, 3, ... and Q(i) = A021027, we have X=3; Y=7 (attributed to Vedic literature). - _K.V.Iyer_, Jun 16 2010, Jun 18 2010 %C A068028 The sequence of convergents of the continued fraction of Pi begins [3, 22/7, 333/106, 355/113, 103993/33102, ...]. 22/7 is the second convergent. The summation 240*Sum_{n >= 1} 1/((4*n+1)*(4*n+2)*(4*n+3)*(4*n+5)(4*n+6)*(4*n+7)) = 22/7 - Pi shows that 22/7 is an over-approximation to Pi. - _Peter Bala_, Oct 12 2021 %D A068028 John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 187, 239. %D A068028 Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.6 The Quest for Pi and §13.3 Solving Triangles, pp. 90, 479. %D A068028 David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 49. %H A068028 D. Castellanos, <a href="http://www.jstor.org/stable/2690037">The ubiquitous pi</a>, Math. Mag., 61 (1988), 67-98 and 148-163. - _N. J. A. Sloane_, Mar 24 2012 %H A068028 D. P. Dalzell, <a href="https://doi.org/10.1112/jlms/19.75_Part_3.133">On 22/7</a>, J. London Math. Soc. 19, 133-134, 1944. %H A068028 Dale Winham, <a href="http://www.oocities.org/siliconvalley/pines/5945/facts.html">Facts about Pi</a>. %H A068028 <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a>. %H A068028 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,-1,1). %F A068028 a(0)=3, a(n) = floor(714285/10^(5-(n mod 6))) mod 10. - _Sascha Kurz_, Mar 23 2002 [corrected by _Jason Yuen_, Aug 18 2024] %F A068028 Equals 100*A021018 - 4 = 3 + A020806. - _R. J. Mathar_, Sep 30 2008 %F A068028 For n>1 a(n) = A020806(n-2) (note offset=0 in A020806 and offset=1 in A068028). - _Zak Seidov_, Mar 26 2015 %F A068028 G.f.: x*(3-2*x+3*x^2+x^3+4*x^4)/((1-x)*(1+x)*(1-x+x^2)). - _Vincenzo Librandi_, Mar 27 2015 %t A068028 CoefficientList[Series[(3 - 2 x + 3 x^2 + x^3 + 4 x^4) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Mar 27 2015 *) %t A068028 Join[{3},LinearRecurrence[{1, 0, -1, 1},{1, 4, 2, 8},104]] (* _Ray Chandler_, Aug 26 2015 *) %t A068028 RealDigits[22/7,10,120][[1]] (* _Harvey P. Dale_, Oct 04 2021 *) %o A068028 (Magma) I:=[3,1,4,2,8]; [n le 5 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // _Vincenzo Librandi_, Mar 27 2015 %Y A068028 Cf. A068079, A068089, A002485, A002486, A046965, A046947. %K A068028 easy,nonn,cons %O A068028 1,1 %A A068028 _Nenad Radakovic_, Mar 22 2002 %E A068028 More terms from _Sascha Kurz_, Mar 23 2002 %E A068028 Alternative to broken link added by _R. J. Mathar_, Jun 18 2010