This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068050 #51 Jun 04 2024 15:08:10 %S A068050 0,1,1,1,2,2,3,2,2,4,5,3,4,5,6,5,6,5,6,6,7,9,10,6,7,9,9,9,10,10,11,9, %T A068050 10,12,14,11,12,13,14,13,14,13,14,14,15,17,18,13,14,16,17,18,19,17,19, %U A068050 18,19,21,22,18,19,20,21,19,21,22,23,23,24,26,27,21,22,23,24,24,26,27 %N A068050 Number of values of k, 1<=k<=n, for which floor(n/k) is prime. %H A068050 Reinhard Zumkeller, <a href="/A068050/b068050.txt">Table of n, a(n) for n = 1..10000</a> %H A068050 Randell Heyman, <a href="https://arxiv.org/abs/2111.00408">Primes in floor function sets</a>, arXiv:2111.00408 [math.NT], 2021. %F A068050 If p is a prime other than 3, a(p) = a(p-1) + 1. - _Franklin T. Adams-Watters_, Apr 27 2020 %F A068050 a(n) = A179119*n + O(n^(1/2)). - _Randell Heyman_, Oct 06 2022 %F A068050 a(n) = Sum_{p prime and p<=n} (floor(n/p) - floor(n/(p+1))). - _Ridouane Oudra_, Jun 03 2024 %e A068050 a(10) = 4 as floor(10/k) for k = 1 to 10 is 10,5,3,2,2,1,1,1,1,1, respectively; this is prime for k = 2,3,4,5. %t A068050 a[n_] := Length[Select[Table[Floor[n/i], {i, 1, n}], PrimeQ]] %t A068050 Table[Count[Table[Floor[n/k],{k,n}],_?PrimeQ],{n,80}] (* _Harvey P. Dale_, Nov 19 2022 *) %o A068050 (Haskell) %o A068050 a068050 n = length [k | k <- [1..n], a010051 (n `div` k) == 1] %o A068050 -- _Reinhard Zumkeller_, Jan 31 2012 %o A068050 (PARI) a(n) = sum(k=1, n, isprime(n\k)); \\ _Michel Marcus_, Jun 03 2024 %Y A068050 Cf. A067514. %Y A068050 Cf. A010051, A179119, A205745. %K A068050 easy,nonn %O A068050 1,5 %A A068050 _Amarnath Murthy_, Feb 12 2002 %E A068050 Edited by _Dean Hickerson_, Feb 12 2002