cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068069 a(n) is the least k which is the start of n consecutive integers each with a different number, 1 through n, of distinct prime factors.

Original entry on oeis.org

1, 2, 5, 28, 417, 14322, 461890, 46908264, 7362724275, 4418626443462
Offset: 0

Views

Author

Robert G. Wilson v, Feb 20 2002

Keywords

Comments

a(n) >= n!. If the canonical factorization of k is the product of p^e(p) over primes, then the number of distinct number of prime factors is simply the number of p's.

Examples

			a(1) = 2 because 2 has the single prime factor 2; a(2) = 5 because 5 = 5^1 & 6 = 2*3 which have 1 & 2 prime factors respectively; a(3) = 28 because 28 = 2^2*7^1, 29 = 29^1 & 30 = 2*3*5 which have 2, 1 & 3 prime factors respectively; a(4) = 417 because 417 = 3*139, 418 = 2*11*19, 419 = 419^1 & 420 = 2^2*3*5*7 which have 2, 3, 1 & 4 prime factors (distinct) respectively and this represents a record-breaking number.
		

Crossrefs

Cf. A067665.

Programs

  • Mathematica
    k = 3; Do[k = k - n; a = Table[ Length[ FactorInteger[i]], {i, k, k + n - 1}]; b = Table[i, {i, 1, n}]; While[ Sort[a] != b, k++; a = Drop[a, 1]; a = Append[a, Length[ FactorInteger[k]]]]; Print[k - n + 1], {n, 1, 7}]

Formula

Koninck, Friedlander, & Luca prove that a(n) > exp(2n + o(n)), but note that an earlier result of Erdős is "essentially equivalent". - Charles R Greathouse IV, Feb 04 2013

Extensions

One more term from Labos Elemer, May 26 2003
One more term from Donovan Johnson, Apr 03 2008
Corrected example and a(9) from Donovan Johnson, Aug 31 2010