cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068108 a(1) = 1; a(n+1) = sum{k|n k<=sqrt(n)} a(k) where sum is over the positive divisors k of n with k <= sqrt(n).

This page as a plain text file.
%I A068108 #16 Mar 11 2014 01:32:11
%S A068108 1,1,1,1,2,1,2,1,2,2,2,1,3,1,2,2,3,1,3,1,3,2,2,1,4,3,2,2,3,1,5,1,3,2,
%T A068108 2,3,5,1,2,2,5,1,4,1,3,4,2,1,5,3,4,2,3,1,4,3,5,2,2,1,7,1,2,4,4,3,4,1,
%U A068108 3,2,6,1,6,1,2,4,3,3,4,1,6,4,2,1,7,3,2,2,4,1,8,3,3,2,2,3,6,1,4,4,7,1,4,1,4
%N A068108 a(1) = 1; a(n+1) = sum{k|n k<=sqrt(n)} a(k) where sum is over the positive divisors k of n with k <= sqrt(n).
%H A068108 T. D. Noe, <a href="/A068108/b068108.txt">Table of n, a(n) for n=1..10000</a>
%F A068108 a(n) = A038548(n-1), 2<=n<=25. - _Omar E. Pol_, Feb 05 2014
%t A068108 a[1]=1; a[n_] := a[n] = Module[{d=Divisors[n-1], s=0, i=1}, While[i<=Length[d] && d[[i]]<=Sqrt[n-1], s=s+a[d[[i]]]; i++ ]; s]; Table[a[n], {n, 150}] (T. D. Noe)
%Y A068108 Different from A038548.
%K A068108 nonn
%O A068108 1,5
%A A068108 _Leroy Quet_, Mar 22 2002
%E A068108 More terms from _T. D. Noe_, Nov 03 2004