A068186 a(n) is the largest number whose product of decimal digits equals n^n.
22, 333, 22222222, 55555, 333333222222, 7777777, 222222222222222222222222, 333333333333333333, 55555555552222222222, 0, 333333333333222222222222222222222222, 0, 7777777777777722222222222222
Offset: 2
Examples
n=10, 10^10=10000000000, a(5)=55555555552222222222.
Links
- Chai Wah Wu, Table of n, a(n) for n = 2..100
Programs
-
Python
from sympy import factorint def A068186(n): if n == 1: return 1 pf = factorint(n) ps = sorted(pf.keys(),reverse=True) if ps[0] > 7: return 0 s = '' for p in ps: s += str(p)*(n*pf[p]) return int(s) # Chai Wah Wu, Aug 12 2017
Formula
a(n) is obtained as prime factors of n^n concatenated in order of magnitude and with repetitions; a(n)=0 if n has p > 7 prime factors.
Extensions
a(12) corrected by Chai Wah Wu, Aug 12 2017
Comments