This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068232 #20 Jun 03 2025 01:09:13 %S A068232 13,661,8317,12829,586153,1081417,7790917,7790917,370861009,370861009, %T A068232 370861009,5637496849,289391626057,469257742237,628337233501, %U A068232 84424712545429,155494152002017,341821313785729 %N A068232 a(n) is the smallest prime p such that p and the next n-1 primes are all == 1 (mod 12). %C A068232 Dickson's conjecture implies that a(n) exists for all n. %H A068232 The Prime Glossary, <a href="https://t5k.org/glossary/page.php?sort=DicksonsConjecture">Dickson's conjecture</a> %t A068232 For[i=n=1, True, Null, For[j=0, j<n&&Mod[Prime[i+j], 12]==1, j++, Null]; If[j==n, Print[Prime[i]]; n++, i++]] %t A068232 Module[{p12=Mod[Prime[Range[2*10^7]],12]},Table[Prime[ SequencePosition[ p12,PadRight[ {},n,1],1][[All,1]]],{n,11}]]//Flatten (* Requires Mathematica version 10 or later *) (* The program generates the first 11 terms of the sequence *) (* _Harvey P. Dale_, Dec 24 2020 *) %o A068232 (PARI) {i=n=1; while(1,j=0; while(j<n&&prime(i+j)%12==1,j++); if(j==n,print(prime(i)); n++,i++))} %Y A068232 Cf. A068227, A068228, A068229, A040117, A068231, A068233, A068234, A068235. %K A068232 nice,nonn %O A068232 1,1 %A A068232 Ferenc Adorjan (fadorjan(AT)freemail.hu), Feb 22 2002 %E A068232 Edited by _Dean Hickerson_, Mar 06 2002 %E A068232 a(12)-a(15) from _Giovanni Resta_, Feb 18 2006 %E A068232 a(16)-a(18) from _Giovanni Resta_, Aug 04 2013