This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068316 #15 Oct 14 2019 01:29:26 %S A068316 5,1,1,1,6,2,4,3,4,1,2,1,6,2,1,1,1,1,1,2,1,1,2,1,2,2,2,1,3,2,2,1,2,1, %T A068316 3,1,2,1,3,2,2,1,1,1,1,1,4,1,2,2,3,1,2,5,2,2,1,1,2,4,1,1,2,1,1,2,1,1, %U A068316 3,1,2,2,4,1,2,2,2,1,4,2,2,1,2,2,2,1,2,1,2,1,1,1,3,1,1,1,1,2 %N A068316 Run lengths of the Moebius function applied to A051270 (numbers with 5 distinct prime factors). %e A068316 If we consider A051270 and apply the Moebius function mu(n) to it we get a sequence of values: (-1,-1,-1,-1,-1),0,(-1),0,(-1,-1,-1,-1,-1,-1),0,0,(-1,-1,-1,-1),0,0,0,(-1,-1,-1,-1),0,(-1,-1),0,(-1, ... If we then look at the lengths of runs of equal terms, we get the sequence. %e A068316 If we consider the values of A051270 which are not in A046387 we get numbers which are not squarefree, so mu(A051270(.)) is zero: 4620, 5460, 6930, ... %p A068316 runl := 1 : %p A068316 for n from 2 to 1000 do %p A068316 if numtheory[mobius](A051270(n)) = numtheory[mobius](A051270(n-1)) then %p A068316 runl := runl+1 ; %p A068316 else %p A068316 printf("%d,",runl) ; %p A068316 runl := 1; %p A068316 end if; %p A068316 end do: # _R. J. Mathar_, Oct 13 2019 %Y A068316 Cf. A046387, A051270. %K A068316 nonn %O A068316 1,1 %A A068316 _Jani Melik_, Feb 26 2002 %E A068316 Corrected and extended by _R. J. Mathar_, Oct 13 2019