cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068322 Number of arithmetic progressions of positive odd integers, strictly increasing with sum n.

This page as a plain text file.
%I A068322 #47 Jan 09 2025 00:27:13
%S A068322 1,0,1,1,1,1,1,2,2,2,1,3,1,3,3,5,1,4,1,5,4,5,1,7,2,6,5,8,1,7,1,9,6,8,
%T A068322 2,11,1,9,7,12,1,10,1,12,10,11,1,15,2,12,9,15,1,13,3,16,10,14,1,18,1,
%U A068322 15,12,20,4,17,1,19,12,17,1,22,1,18,16,22,2,20,1,24,15,20,1,25,5,21,15,26
%N A068322 Number of arithmetic progressions of positive odd integers, strictly increasing with sum n.
%H A068322 Seiichi Manyama, <a href="/A068322/b068322.txt">Table of n, a(n) for n = 1..10000</a>
%H A068322 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://ftp.math.uni-rostock.de/pub/romako/heft64/bou64.pdf">Integer partitions into arithmetic progressions</a>, Rostok. Math. Kolloq. 64 (2009), 11-16.
%H A068322 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://www.emis.de/journals/INTEGERS/papers/j7/j7.Abstract.html">Integer partitions into arithmetic progressions with an odd common difference</a>, Integers 9(1) (2009), 77-81.
%H A068322 Graeme McRae, <a href="https://web.archive.org/web/20081122034835/http://2000clicks.com/MathHelp/BasicSequenceA049982.htm">Counting arithmetic sequences whose sum is n</a>.
%H A068322 Graeme McRae, <a href="/A049988/a049988.pdf">Counting arithmetic sequences whose sum is n</a> [Cached copy]
%H A068322 Augustine O. Munagi, <a href="http://www.emis.de/journals/INTEGERS/papers/k7/k7.Abstract.html">Combinatorics of integer partitions in arithmetic progression</a>, Integers 10(1) (2010), 73-82.
%H A068322 Augustine O. Munagi and Temba Shonhiwa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Shonhiwa/shonhiwa13.html">On the partitions of a number into arithmetic progressions</a>, Journal of Integer Sequences 11 (2008), Article 08.5.4.
%H A068322 A. N. Pacheco Pulido, <a href="http://www.bdigital.unal.edu.co/7753/">Extensiones lineales de un poset y composiciones de números multipartitos</a>, Maestría thesis, Universidad Nacional de Colombia, 2012.
%H A068322 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a>.
%H A068322 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>.
%F A068322 From _Petros Hadjicostas_, Oct 01 2019: (Start)
%F A068322 a(n) = A068324(n) - A001227(n) + (1/2) * (1 - (-1)^n).
%F A068322 G.f.: x/(1 - x^2) + Sum_{m >= 2} x^(m^2)/((1 - x^(2*m)) * (1 - x^(m*(m-1)))).
%F A068322 (End)
%e A068322 From _Petros Hadjicostas_, Sep 29 2019: (Start)
%e A068322 a(12) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=12: 1+11, 3+9, and 5+7.
%e A068322 a(13) = 1 because we have only the following arithmetic progressions of odd numbers, strictly increasing with sum n=13: 13.
%e A068322 a(14) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=14: 1+13, 3+11, and 5+9.
%e A068322 a(15) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=15: 15, 3+5+7, and 1+5+9.
%e A068322 (End)
%Y A068322 Cf. A049980, A049981, A049982, A049983, A049986, A049987, A049988, A049989, A049990, A068323, A068324, A070211, A127938, A175327, A325328, A325407, A325545, A325546, A325547, A325548.
%K A068322 easy,nonn
%O A068322 1,8
%A A068322 _Naohiro Nomoto_, Feb 27 2002