This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068322 #47 Jan 09 2025 00:27:13 %S A068322 1,0,1,1,1,1,1,2,2,2,1,3,1,3,3,5,1,4,1,5,4,5,1,7,2,6,5,8,1,7,1,9,6,8, %T A068322 2,11,1,9,7,12,1,10,1,12,10,11,1,15,2,12,9,15,1,13,3,16,10,14,1,18,1, %U A068322 15,12,20,4,17,1,19,12,17,1,22,1,18,16,22,2,20,1,24,15,20,1,25,5,21,15,26 %N A068322 Number of arithmetic progressions of positive odd integers, strictly increasing with sum n. %H A068322 Seiichi Manyama, <a href="/A068322/b068322.txt">Table of n, a(n) for n = 1..10000</a> %H A068322 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://ftp.math.uni-rostock.de/pub/romako/heft64/bou64.pdf">Integer partitions into arithmetic progressions</a>, Rostok. Math. Kolloq. 64 (2009), 11-16. %H A068322 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://www.emis.de/journals/INTEGERS/papers/j7/j7.Abstract.html">Integer partitions into arithmetic progressions with an odd common difference</a>, Integers 9(1) (2009), 77-81. %H A068322 Graeme McRae, <a href="https://web.archive.org/web/20081122034835/http://2000clicks.com/MathHelp/BasicSequenceA049982.htm">Counting arithmetic sequences whose sum is n</a>. %H A068322 Graeme McRae, <a href="/A049988/a049988.pdf">Counting arithmetic sequences whose sum is n</a> [Cached copy] %H A068322 Augustine O. Munagi, <a href="http://www.emis.de/journals/INTEGERS/papers/k7/k7.Abstract.html">Combinatorics of integer partitions in arithmetic progression</a>, Integers 10(1) (2010), 73-82. %H A068322 Augustine O. Munagi and Temba Shonhiwa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Shonhiwa/shonhiwa13.html">On the partitions of a number into arithmetic progressions</a>, Journal of Integer Sequences 11 (2008), Article 08.5.4. %H A068322 A. N. Pacheco Pulido, <a href="http://www.bdigital.unal.edu.co/7753/">Extensiones lineales de un poset y composiciones de números multipartitos</a>, Maestría thesis, Universidad Nacional de Colombia, 2012. %H A068322 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a>. %H A068322 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>. %F A068322 From _Petros Hadjicostas_, Oct 01 2019: (Start) %F A068322 a(n) = A068324(n) - A001227(n) + (1/2) * (1 - (-1)^n). %F A068322 G.f.: x/(1 - x^2) + Sum_{m >= 2} x^(m^2)/((1 - x^(2*m)) * (1 - x^(m*(m-1)))). %F A068322 (End) %e A068322 From _Petros Hadjicostas_, Sep 29 2019: (Start) %e A068322 a(12) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=12: 1+11, 3+9, and 5+7. %e A068322 a(13) = 1 because we have only the following arithmetic progressions of odd numbers, strictly increasing with sum n=13: 13. %e A068322 a(14) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=14: 1+13, 3+11, and 5+9. %e A068322 a(15) = 3 because we have the following arithmetic progressions of odd numbers, strictly increasing with sum n=15: 15, 3+5+7, and 1+5+9. %e A068322 (End) %Y A068322 Cf. A049980, A049981, A049982, A049983, A049986, A049987, A049988, A049989, A049990, A068323, A068324, A070211, A127938, A175327, A325328, A325407, A325545, A325546, A325547, A325548. %K A068322 easy,nonn %O A068322 1,8 %A A068322 _Naohiro Nomoto_, Feb 27 2002