cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068324 Number of nondecreasing arithmetic progressions of positive odd integers with sum n.

This page as a plain text file.
%I A068324 #39 Jan 09 2025 00:24:46
%S A068324 1,1,2,2,2,3,2,3,4,4,2,5,2,5,6,6,2,7,2,7,7,7,2,9,4,8,8,10,2,11,2,10,9,
%T A068324 10,5,14,2,11,10,14,2,14,2,14,15,13,2,17,4,15,12,17,2,17,6,18,13,16,2,
%U A068324 22,2,17,17,21,7,21,2,21,15,21,2,25,2,20,21,24,5,24,2,26,19,22,2,29,8
%N A068324 Number of nondecreasing arithmetic progressions of positive odd integers with sum n.
%H A068324 Seiichi Manyama, <a href="/A068324/b068324.txt">Table of n, a(n) for n = 1..10000</a>
%H A068324 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="http://ftp.math.uni-rostock.de/pub/romako/heft64/bou64.pdf"> Integer partitions into arithmetic progressions</a>, Rostok. Math. Kolloq. 64 (2009), 11-16.
%H A068324 Sadek Bouroubi and Nesrine Benyahia Tani, <a href="https://www.emis.de/journals/INTEGERS/papers/j7/j7.Abstract.html"> Integer partitions into arithmetic progressions with an odd common difference</a>, Integers 9(1) (2009), 77-81.
%H A068324 Graeme McRae, <a href="https://web.archive.org/web/20081122034835/http://2000clicks.com/MathHelp/BasicSequenceA049982.htm">Counting arithmetic sequences whose sum is n</a>.
%H A068324 Graeme McRae, <a href="/A049988/a049988.pdf">Counting arithmetic sequences whose sum is n</a> [Cached copy]
%H A068324 Augustine O. Munagi, <a href="https://www.emis.de/journals/INTEGERS/papers/k7/k7.Abstract.html">Combinatorics of integer partitions in arithmetic progression</a>, Integers 10(1) (2010), 73-82.
%H A068324 Augustine O. Munagi and Temba Shonhiwa, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL11/Shonhiwa/shonhiwa13.html">On the partitions of a number into arithmetic progressions</a>, Journal of Integer Sequences 11 (2008), Article 08.5.4.
%H A068324 A. N. Pacheco Pulido, <a href="http://www.bdigital.unal.edu.co/7753/">Extensiones lineales de un poset y composiciones de números multipartitos</a>, Maestría thesis, Universidad Nacional de Colombia, 2012.
%H A068324 Wikipedia, <a href="https://en.wikipedia.org/wiki/Arithmetic_progression">Arithmetic progression</a>.
%H A068324 Gus Wiseman, <a href="/A325325/a325325.txt">Sequences counting and ranking integer partitions by the differences of their successive parts</a>.
%F A068324 From _Petros Hadjicostas_, Oct 01 2019: (Start)
%F A068324 a(n) = A068322(n) + A001227(n) - (1/2) * (1 - (-1)^n).
%F A068324 G.f.: x/(1 - x^2) + Sum_{m >= 2} x^m/((1 - x^(2*m)) * (1 - x^(m*(m-1)))).
%F A068324 (End)
%e A068324 From _Petros Hadjicostas_, Sep 29 2019: (Start)
%e A068324 a(6) = 3 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=6: 1+5, 3+3, and 1+1+1+1+1+1.
%e A068324 a(7) = 2 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=7: 7 and 1+1+1+1+1+1+1.
%e A068324 a(8) = 3 because we have the following nondecreasing arithmetic progressions of positive odd integers with sum n=8: 1+7, 3+5, and 1+1+1+1+1+1+1+1.
%e A068324 (End)
%Y A068324 Cf. A049980, A049981, A049982, A049983, A049986, A049987, A049988, A049989, A049990, A068322, A068323, A127938, A175327, A325328, A325407, A325545, A325546, A325547, A325548.
%K A068324 easy,nonn
%O A068324 1,3
%A A068324 _Naohiro Nomoto_, Feb 27 2002
%E A068324 Extended and edited by _John W. Layman_, Mar 15 2002