This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068393 #22 Mar 17 2018 04:13:15 %S A068393 2,3,7,44,494,748827,99987552,23904291912,23904291912,14647978829979, %T A068393 16186345621426754,45843626565163628751,235646717730827228414584, %U A068393 3099290829556018890177304005 %N A068393 Number of partitions of n X n checkerboard by two edgewise-connected sets which produce the maximum n^2-2n+2 frontier edges between the two sets. Partitions equal under rotation or reflection are counted only once. %C A068393 For even n > 2 the only symmetry possible is rotation by 180 degrees. For odd n > 1 the only symmetries are reflections either horizontally or vertically. - _Andrew Howroyd_, Apr 15 2016 %e A068393 From _Andrew Howroyd_, Apr 15 2016: (Start) %e A068393 Case n=4: There are 2 nonisomorphic symmetrical solutions (see illustration below). a(4)=(A068381(4)/8 + 2)/2 = 7. %e A068393 __.__.__.__. __.__.__.__. %e A068393 | __ __| | __ | | %e A068393 | | | | | | | | | | %e A068393 |__| |__| | | | |__| | %e A068393 |__.__.__.__| |__|__.__.__| %e A068393 Case n=5: There are 7 nonisomorphic symmetrical solutions (see illustration below). a(5)=(A068381(5)/8 + 7)/2 = 44. %e A068393 __.__.__.__.__. __.__.__.__.__. __.__.__.__.__. __.__.__.__.__. %e A068393 | __| |__ | | __| |__ | | |__ __| | | | __ | | %e A068393 | |__ __| | | | __ | | | __| |__ | | | | | | | %e A068393 | __| |__ | | | | | | | | | __ | | | | | | | | %e A068393 | |__.__.__| | | |__| |__| | | |__| |__| | | |__| |__| | %e A068393 |__.__.__.__.__| |__.__.__.__.__| |__.__.__.__.__| |__.__.__.__.__| %e A068393 __.__.__.__.__. __.__.__.__.__. __.__.__.__.__. %e A068393 |__.__ __.__| |__ __ __| | __ __ | %e A068393 | __| |__ | | | | | | | |__| | | |__| %e A068393 | | __ | | | | | | | | | __| |__ | %e A068393 | |__| |__| | | |__| |__| | | |__.__.__| | %e A068393 |__.__.__.__.__| |__.__.__.__.__| |__.__.__.__.__| %e A068393 (End) %Y A068393 Cf. A068381, A068416, A068392, A265914. %K A068393 nonn %O A068393 2,1 %A A068393 _R. H. Hardin_, Mar 03 2002 %E A068393 a(7)-a(15) from _Andrew Howroyd_, Apr 15 2016