cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068394 Numbers k such that the k-th digit of Pi and the k-th digit of e are the same.

This page as a plain text file.
%I A068394 #38 Feb 24 2024 06:47:33
%S A068394 12,16,17,20,33,39,44,55,58,69,80,94,99,142,169,205,243,262,274,278,
%T A068394 293,323,325,330,333,360,364,387,388,395,411,419,427,428,452,459,460,
%U A068394 461,483,493,499,500,503,506,511,522,525,547,581,590,594,595,598,602
%N A068394 Numbers k such that the k-th digit of Pi and the k-th digit of e are the same.
%H A068394 Amiram Eldar, <a href="/A068394/b068394.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..290 from Carmine Suriano)
%F A068394 a(n) = A052055(n) - 1.
%e A068394 Let dPi(n) be the n-th digit of Pi=3.14159... (e.g., dPi(2)=4) and de(n) be the n-th digit of e=2.718... (e.g., de(2)=1); then dPi(12) = de(12) = 9, hence 12 is in the sequence.
%t A068394 max = 600; Position[RealDigits[Pi - 3, 10, max][[1]] - RealDigits[E - 2, 10, max][[1]], _?(# == 0 &)] // Flatten (* _Amiram Eldar_, May 21 2022 *)
%o A068394 (Magma) m:=610; p:=Pi(RealField(m+1)); sp:=IntegerToString(Round(10^m*(p-3))); e:=Exp(One(RealField(m+1))); se:=IntegerToString(Round(10^m*(e-2))); [ a: a in [1..m] | sp[a] eq se[a] ]; // _Klaus Brockhaus_, Sep 04 2009
%Y A068394 Cf. A000796, A001113, A052055.
%K A068394 easy,nonn,base
%O A068394 1,1
%A A068394 _Benoit Cloitre_, Mar 08 2002
%E A068394 Listed terms verified by _Klaus Brockhaus_, Sep 04 2009