cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068413 a(n) = number of partitions of 2^n.

This page as a plain text file.
%I A068413 #15 Feb 22 2017 18:46:34
%S A068413 1,2,5,22,231,8349,1741630,4351078600,365749566870782,
%T A068413 4453575699570940947378,61847822068260244309086870983975,
%U A068413 18116048323611252751541173214616030020513022685,6927233917602120527467409170319882882996950147283323368445315320451
%N A068413 a(n) = number of partitions of 2^n.
%H A068413 Alois P. Heinz, <a href="/A068413/b068413.txt">Table of n, a(n) for n = 0..19</a>
%H A068413 Henry Bottomley, <a href="http://www.se16.info/js/partitions.htm">Partition calculators using java applets</a>
%H A068413 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A068413 a(n) = A000041(A000079(n)).
%F A068413 a(n) ~ exp(Pi*sqrt(2^(n+1)/3))/(sqrt(3)*2^(n+2)). - _Ilya Gutkovskiy_, Jan 13 2017
%e A068413 a(2)=5 since there are 5 partitions of 2^2=4: 4, 3+1, 2+2, 2+1+1, 1+1+1+1+1.
%t A068413 Table[ PartitionsP[2^n], {n, 0, 12}]
%Y A068413 Cf. A000041, A000079, A018819, A067735.
%K A068413 nonn
%O A068413 0,2
%A A068413 _Henry Bottomley_, Mar 03 2002