This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068456 #17 Sep 08 2022 08:45:05 %S A068456 1,0,0,0,1,0,0,0,5,7,9,5,2,12,13,10,10,4,4,4,14,4,10,14,12,9,22,9,11, %T A068456 9,8,14,26,25,28,22,35,0,24,0,20,18,13,21,31,30,22,24,19,34,16,42,36, %U A068456 46,35,46,32,16,34,53,11,44,45,49,36,49,13,53,67,53,63,11,9,9,16,37,59,8 %N A068456 Factorial expansion of zeta(7) = Sum_{n>=1} a(n)/n!. %H A068456 G. C. Greubel, <a href="/A068456/b068456.txt">Table of n, a(n) for n = 1..2500</a> %t A068456 t = Zeta[7]; s = {}; Do[n = Floor[t*i!]; t -= n/i!; AppendTo[s, n], {i, 1, 30}]; s (* _Amiram Eldar_, Nov 25 2018 *) %t A068456 With[{b = Zeta[7]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]] (* _G. C. Greubel_, Nov 26 2018 *) %o A068456 (PARI) vector(30,n,if(n>1,t=t%1*n,t=zeta(7))\1) \\ _M. F. Hasler_, Nov 25 2018 %o A068456 (PARI) default(realprecision, 250); for(n=1, 80, print1(if(n==1, floor(zeta(7)), floor(n!*zeta(7)) - n*floor((n-1)!*zeta(7))), ", ")) \\ _G. C. Greubel_, Nov 26 2018 %o A068456 (Magma) SetDefaultRealField(RealField(250)); L:=RiemannZeta(); [Floor(Evaluate(L,7))] cat [Floor(Factorial(n)*Evaluate(L,7)) - n*Floor(Factorial((n-1))*Evaluate(L,7)) : n in [2..80]]; // _G. C. Greubel_, Nov 26 2018 %o A068456 (Sage) %o A068456 def A068456(n): %o A068456 if (n==1): return floor(zeta(7)) %o A068456 else: return expand(floor(factorial(n)*zeta(7)) - n*floor(factorial(n-1)*zeta(7))) %o A068456 [A068456(n) for n in (1..80)] # _G. C. Greubel_, Nov 26 2018 %Y A068456 Cf. A007514. %K A068456 nonn %O A068456 1,9 %A A068456 _Benoit Cloitre_, Mar 10 2002 %E A068456 Name edited and keywords cons,easy removed by _M. F. Hasler_, Nov 25 2018