cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068465 Decimal expansion of Gamma(3/4).

This page as a plain text file.
%I A068465 #56 Jan 04 2025 10:32:50
%S A068465 1,2,2,5,4,1,6,7,0,2,4,6,5,1,7,7,6,4,5,1,2,9,0,9,8,3,0,3,3,6,2,8,9,0,
%T A068465 5,2,6,8,5,1,2,3,9,2,4,8,1,0,8,0,7,0,6,1,1,2,3,0,1,1,8,9,3,8,2,8,9,8,
%U A068465 2,2,8,8,8,4,2,6,7,9,8,3,5,7,2,3,7,1,7,2,3,7,6,2,1,4,9,1,5,0,6,6,5,8,2,1,7
%N A068465 Decimal expansion of Gamma(3/4).
%D A068465 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:14 at page 414.
%H A068465 G. C. Greubel, <a href="/A068465/b068465.txt">Table of n, a(n) for n = 1..20000</a>
%H A068465 Russell J. Matheson, <a href="http://www.plouffe.fr/simon/constants/gamma34.txt">GAMMA(3/4) computed to 14550 digits</a>.
%H A068465 Simon Plouffe, <a href="http://plouffe.fr/simon/articles/1409.0110v1.pdf">GAMMA(3/4) to 256 places</a>, see p. 65.
%H A068465 <a href="/index/Ga#gamma_function">Index to sequences related to the Gamma function</a>
%F A068465 Gamma(3/4) * A068466 = sqrt(2)*Pi = A063448. - _R. J. Mathar_, Jun 18 2006
%F A068465 Equals Integral_{x>=0} x^(-1/4)*exp(-x) dx. - _Vaclav Kotesovec_, Nov 12 2020
%F A068465 Equals (Pi/2)^(1/4) * sqrt(AGM(1,sqrt(2))) = sqrt(A069998 * A053004). - _Amiram Eldar_, Jun 12 2021
%e A068465 Gamma(3/4) = 1.225416702465177645129098303362890526851239248108070611...
%p A068465 evalf(GAMMA(3/4)) ; # _R. J. Mathar_, Jan 10 2013
%t A068465 RealDigits[Gamma[3/4], 10, 100][[1]] (* _G. C. Greubel_, Mar 11 2018 *)
%o A068465 (PARI) default(realprecision, 100); gamma(3/4) \\ _G. C. Greubel_, Mar 11 2018
%o A068465 (Magma) SetDefaultRealField(RealField(105)); Gamma(3/4); // _G. C. Greubel_, Mar 11 2018
%Y A068465 Cf. A000796, A002193, A053004, A063448, A068466, A069998.
%K A068465 cons,easy,nonn
%O A068465 1,2
%A A068465 _Benoit Cloitre_, Mar 10 2002