This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068492 #37 Sep 07 2025 00:42:52 %S A068492 11,13,17,19,71,73,89,101,103,107,131,137,149,167,173,191,197,199,223, %T A068492 229,233,283,307,311,313,331,337,359,383,401,433,439,461,463,491,523, %U A068492 569,593,631,641,647,659,709,733,743,773,809,823,859,907,911,919,947 %N A068492 Primes that remain prime after each digit is replaced by its square. %H A068492 Chai Wah Wu, <a href="/A068492/b068492.txt">Table of n, a(n) for n = 1..10000</a> (n = 1..785 from Zak Seidov) %e A068492 When each digit of the prime 89 is replaced by its square, 6481, a prime, results. Hence 89 is a term of the sequence. %t A068492 f[n_] := Block[{a = IntegerDigits[n], b = "", k = 1, l}, l = Length[a]; While[k < l + 1, b = StringJoin[b, ToString[a[[k]]^2]]; k++ ]; ToExpression[b]]; Do[ If[ PrimeQ[ f[ Prime[n]]], Print[ Prime[n]]], {n, 1, 150} ] %t A068492 Select[Prime[Range[200]],PrimeQ[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]^2)]]]&] (* _Harvey P. Dale_, Dec 31 2023 *) %o A068492 (Magma) DigitsSquared:=func< n | StringToInteger(&cat[ IntegerToString(a): a in Reverse([ d^2: d in Intseq(n) ]) ]) >; IsA068492:=func< p | IsPrime(DigitsSquared(p)) >; [ p: p in PrimesUpTo(1000) | IsA068492(p) ]; // _Klaus Brockhaus_, Mar 05 2011 %o A068492 (PARI) %o A068492 digsquare(n)={fromdigits(concat(apply(d->if(d,digits(d^2),[0]),digits(n))))} %o A068492 ok(n)={isprime(n)&&isprime(digsquare(n))} \\ _Andrew Howroyd_, Feb 27 2018 %o A068492 (Python) %o A068492 from sympy import isprime, nextprime %o A068492 n = 2 %o A068492 while n < 8000: %o A068492 t = int(''.join(str(int(i)**2) for i in list(str(n)))) %o A068492 if isprime(t): %o A068492 print(n) %o A068492 n = nextprime(n) %o A068492 # _Abhiram R Devesh_, Feb 09 2015 %K A068492 base,nonn,changed %O A068492 1,1 %A A068492 _Joseph L. Pe_, Mar 11 2002 %E A068492 Edited and extended by _Robert G. Wilson v_, Mar 19 2002 %E A068492 Duplicate a(1)-a(215) removed from b-file by _Andrew Howroyd_, Feb 27 2018