This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068505 #29 Feb 13 2017 02:02:50 %S A068505 1,2,3,4,5,6,7,8,9,2,3,5,7,9,11,13,15,17,19,6,7,8,11,14,17,20,23,26, %T A068505 29,12,13,14,15,19,23,27,31,35,39,20,21,22,23,24,29,34,39,44,49,30,31, %U A068505 32,33,34,35,41,47,53,59,42,43,44,45,46,47,48,55,62,69,56,57,58,59,60,61 %N A068505 Decimal representation of n interpreted in base b+1, where b=A054055(n) is the largest digit in decimal representation of n. %C A068505 a(n) = n iff n < 10 OR n is a "9ish number": a(A011539(n)) = A011539(n). - _Reinhard Zumkeller_, Dec 29 2011 %H A068505 R. Zumkeller, <a href="/A068505/b068505.txt">Table of n, a(n) for n = 1..11000</a> %e A068505 a(20)=2*3^1+0*1=6, a(21)=2*3^1+1*1=7, a(22)=2*3^1+2*1=8, %e A068505 a(23)=2*4^1+3*1=11, a(24)=2*5^1+4*1=14, a(25)=2*6^1+5*1=17, %e A068505 a(26)=2*7^1+6*1=20, a(27)=2*8^1+7*1=23, a(28)=2*9^1+8*1=26, %e A068505 a(29)=2*10^1+9*1=29, a(30)=3*4^1+0*1=12, a(31)=3*4^1+1*1=13. %p A068505 f:= proc(n) local b,L,i; %p A068505 L:= convert(n,base,10); %p A068505 b:= max(L); %p A068505 add(L[i]*(b+1)^(i-1),i=1..nops(L)); %p A068505 end proc: %p A068505 map(f, [$1..100]); # _Robert Israel_, Feb 02 2016 %t A068505 a[n_] := (id = IntegerDigits[n] // Reverse; b = Max[id]+1; id.b^Range[0, Length[id]-1]); Table[a[n], {n, 1, 75}] (* _Jean-François Alcover_, May 15 2013 *) %t A068505 Table[FromDigits[IntegerDigits[n],Max[IntegerDigits[n]+1]],{n,80}] (* _Harvey P. Dale_, Dec 02 2015 *) %o A068505 (Haskell) %o A068505 a068505 n = foldr (\d v -> v * b + d) 0 dds where %o A068505 b = maximum dds + 1 %o A068505 dds = a031298_row n %o A068505 -- _Reinhard Zumkeller_, Feb 17 2013, Dec 29 2011 %o A068505 (PARI) a(n)=my(d = digits(n), b = vecmax(d)); subst(Pol(d), x, b+1); \\ _Michel Marcus_, Feb 12 2016 %Y A068505 Cf. A031298. %K A068505 nonn,base,nice,look %O A068505 1,2 %A A068505 _Reinhard Zumkeller_, Mar 11 2002, Feb 23 2008 %E A068505 Definition clarified and comment corrected by _Martin Büttner_, Feb 02 2016