cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068572 Numbers n such that sigma(n) = product of the squares of the decimal digits of n.

This page as a plain text file.
%I A068572 #12 Apr 23 2017 03:33:07
%S A068572 1,1426,2235,13462,45192,67512,95241,119186,134732,152434,165271,
%T A068572 263351,541443,1424335,2316354,2341535,2521376,3263541,3265218,
%U A068572 3341572,3652182,4214295,4225417,5147324,5232472,6442513,11454724,11765416,11976314,12354716,12623752,13181665,13322745,13416198,14135891,14235642,14513891,16126734,16542361,17163642,17235714,18257331,18333451,19346152,21352862,21544941,21743524,23187129
%N A068572 Numbers n such that sigma(n) = product of the squares of the decimal digits of n.
%H A068572 Giovanni Resta, <a href="/A068572/b068572.txt">Table of n, a(n) for n = 1..1000</a>
%e A068572 sigma(541443) = 921600 = 5^2 * 4^2 * 1^2 *4^2* 4^2 *3^2, so 541443 is a term of the sequence.
%t A068572 f[n_] := Module[{a, l}, a = IntegerDigits[n]; l = Length[a]; Product[a[[i]], {i, 1, l}]^2]; Do[If[f[n] == DivisorSigma[1, n], Print[n]], {n, 2, 10^6}]
%t A068572 Select[Range[25*10^6],DivisorSigma[1,#]==(Times@@IntegerDigits[#])^2&] (* _Harvey P. Dale_, Aug 29 2014 *)
%Y A068572 Cf. A058627.
%K A068572 nonn,base
%O A068572 1,2
%A A068572 _Joseph L. Pe_, Mar 26 2002
%E A068572 Added missing first term and a(14)-a(48) from _Donovan Johnson_, Nov 20 2010