This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068625 #31 Jul 23 2024 08:18:37 %S A068625 1,1,2,6,12,60,360,2520,5040,15120,151200,1663200,19958400,259459200, %T A068625 3632428800,54486432000,108972864000,1852538688000,33345696384000, %U A068625 633568231296000,12671364625920000,266098657144320000,5854170457175040000,134645920515025920000 %N A068625 Reduced root factorial of n: product of the smallest integer root of numbers from 1 to n. %C A068625 A "binomial" style a(m+n)/(a(m)*a(n)) is not always an integer, as for instance at m = n = 18 (unlike ordinary factorials or A048803). - _Hal M. Switkay_, Jul 22 2024 %H A068625 Alois P. Heinz, <a href="/A068625/b068625.txt">Table of n, a(n) for n = 0..462</a> (first 37 terms from Hal M. Switkay) %e A068625 a(8) = 1*2*3*2*5*6*7*2 = 5040. %p A068625 b:= proc(n) option remember; (l-> (t-> mul(i[1]^(i[2]/t), %p A068625 i=l))(igcd(seq(i[2], i=l))))(ifactors(n)[2]) %p A068625 end: %p A068625 a:= proc(n) option remember; `if`(n<1, 1, a(n-1)*b(n)) end: %p A068625 seq(a(n), n=0..23); # _Alois P. Heinz_, Jul 22 2024 %Y A068625 Partial products of A052410. %Y A068625 Cf. A000142, A048803. %K A068625 easy,nonn %O A068625 0,3 %A A068625 _Amarnath Murthy_, Feb 26 2002 %E A068625 a(0)=1 prepended by _Alois P. Heinz_, Jul 22 2024