This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068704 #41 May 23 2014 12:15:43 %S A068704 11,421,31,41,2551,61,71,6481,8191,101 %N A068704 a(n) = smallest prime obtained as the concatenation of n^k, n^(k-1), n^(k-2), ..., n^2, n, 1 for some k >= 1; or 0 if no such prime exists. %C A068704 Conjecture: a(n) > 0, that is, for every n there exists a k which yields a prime. %C A068704 If we stop the search when the concatenation reaches 10^500 then the sequence would continue: ?, 207361728144121, 131, ?, 151, 655364096256161, 289171, 181, 191, ?, 211, ?, ?. - _Sascha Kurz_, Mar 27 2002 %e A068704 a(3) = 31 as the concatenation of 3^1 and 1 is prime, so here k = 1. %e A068704 a(5) = 2551= concatenation of 5^2, 5 and 1 is prime, so here k = 2. %e A068704 The known values are as follows: %e A068704 n k a(n) %e A068704 1 1 11 %e A068704 2 2 421 %e A068704 3 1 31 %e A068704 4 1 41 %e A068704 5 2 2551 %e A068704 6 1 61 %e A068704 7 1 71 %e A068704 8 2 6481 %e A068704 9 2 8191 %e A068704 10 1 101 %e A068704 11 ? ? (see A242645) %e A068704 12 4 207361728144121 %e A068704 13 1 131 %e A068704 14 ? ? %e A068704 15 1 151 %e A068704 16 4 655364096256161 %e A068704 17 2 289171 %e A068704 18 1 181 %e A068704 19 1 191 %e A068704 20 ? ? %e A068704 21 1 211 %e A068704 22 ? ? %e A068704 23 ? ? %e A068704 24 1 241 %e A068704 25 1 251 %e A068704 26 ? ? %e A068704 27 1 271 %e A068704 28 1 281 %e A068704 29 4 70728124389841291 (_Jayanta Basu_, May 21 2013) %e A068704 30 6 7290000002430000081000027000900301 (_Jayanta Basu_, May 21 2013) %e A068704 31 1 311 %e A068704 32 2 1024321 %e A068704 33 1 331 %e A068704 34 33 a(n) is an 877-digit number (_Ray Chandler_, Apr 06 2014) %e A068704 35 6 1838265625525218751500625428751225351 (_Jayanta Basu_, May 21 2013) %p A068704 for i from 1 to 23 do k := 0: %p A068704 c := true: %p A068704 while(c) do a := i^k:for j from k-1 to 0 by -1 do a := i^j+10^(floor(log(i^j)/log(10)+0.000001)+1)*a; end do: %p A068704 k := k+1: if(a>10^500) then a := -k; break: end if: %p A068704 if(isprime(a)) then c := false: end if: end do: %p A068704 b[i] := a: end do: seq(b[k],k=1..23); # Warning: program may not compute a(n). - _N. J. A. Sloane_, May 22 2014 %t A068704 Table[k=1; While[!PrimeQ[x=FromDigits[Flatten[IntegerDigits[Reverse[n^Range[0,k]]]]]] && k<30, k++]; If[k==30, x=0]; x, {n,34}] (* _Jayanta Basu_, May 21 2013 *) [Warning: program may not compute a(n). - _N. J. A. Sloane_, May 22 2014] %Y A068704 Cf. A242645 (for a(11)). %K A068704 base,hard,more,nonn %O A068704 1,1 %A A068704 _Amarnath Murthy_, Mar 04 2002 %E A068704 Corrected by _Lior Manor_, May 07 2006 %E A068704 Entry revised by _N. J. A. Sloane_, May 22 2014 to reflect the fact that a(11) is presently unknown.