This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068740 #27 Dec 27 2017 02:12:29 %S A068740 1,1,3,833712928048000000 %N A068740 Result after dividing (n^n)! as many times as possible by n!. %C A068740 For prime n, it is also the number of generalized knockout tournament seedings with n players in one match and n rounds (see formula below). - _Alexander Karpov_, Dec 14 2017 %C A068740 Next term is too large to include. %C A068740 From _Robert G. Wilson v_, Dec 14 2017: (Start) %C A068740 a(4) = 4125147631... (370 digits)...3291015625, %C A068740 a(5) = 3483655217... (7923 digits)...3819109376, %C A068740 a(6) = 2196422024... (164237 digits)...0161431552, %C A068740 a(7) = 4948281440... (4005981 digits)...0000000000, %C A068740 a(8) = 4242413765...(102886160 digits)...4619140625, %C A068740 (End) %H A068740 Robert G. Wilson v, <a href="/A068740/b068740.txt">Table of n, a(n) for n = 0..4</a> %H A068740 Alexander Karpov, <a href="https://wp.hse.ru/data/2017/12/12/1160180715/WP7_2017_03_________.pdf">Generalized knockout tournaments</a>, National Research University Higher School of Economics. WP7/2017/03. %F A068740 a(n) = A068741(n)/A068742(n). %F A068740 For p prime, a(p) = (p^p)!/(p!)^((p^p-1)/(p-1)). %e A068740 a(3)=833712928048000000 since 3!=6 and (3^3)!=27!=10888869450418352160768000000 which is divisible by 6^13=13060694016 but not 6^14=78364164096. %Y A068740 Cf. A000142, A000312, A023037, A057599, A068741, A068742. %K A068740 nonn %O A068740 0,3 %A A068740 _Henry Bottomley_, Feb 26 2002