This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068744 #17 Nov 09 2018 05:49:02 %S A068744 1,1665,87825,1253329,9230193,45642289,172989921,542131425,1473095713, %T A068744 3582226465,7970825457,16492629297,32119620625,59427841617, %U A068744 105227044417,179360179905,295700892993,473379359425,738268965841 %N A068744 Number of potential flows in 3 X 3 array with integer velocities in -n..n, i.e., number of 3 X 3 arrays with adjacent elements differing by no more than n, counting arrays differing by a constant only once. %C A068744 Let y = 2*n - 1; Then apparently a(n) = y^2*(529*y^6 + 910*y^4 + 721*y^2 + 360)/2520. See A068745 (4 X 4) and A063496 (2 X 2), which is y*(2*y^2 + 1)/3 under the same transformation. Suggests total degree N X N-1, with a factor y or y^2 to make the remaining polynomial even. - _R. H. Hardin_, Jan 02 2007 %F A068744 Empirical G.f.: -(x^8+1656*x^7 +72876*x^6 +522760*x^5 +972198*x^4 +522760*x^3 +72876*x^2 +1656*x +1)/(x-1)^9. [_Colin Barker_, Jul 31 2012] %F A068744 Empirical: 315*a(n) = (4232*n^6 +12696*n^5 +17690*n^4 +14220*n^3 +7058*n^2 +2064*n +315) *(1+2*n)^2. - _R. J. Mathar_, Nov 09 2018 %Y A068744 2 X 2 A063496, 4 X 4 A068745, 5 X 5 A068746, 6 X 6 A068747, by velocity limit 1..14 A068748-A068761, solenoidal flows A068722-A068738. %K A068744 nonn %O A068744 0,2 %A A068744 _R. H. Hardin_, Feb 27 2002