This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068782 #19 Jul 17 2024 15:56:23 %S A068782 80,624,1215,1376,2400,2511,2672,3807,3968,4374,5103,5264,6399,6560, %T A068782 7695,7856,8991,9152,9375,10287,10448,10624,11583,11744,12879,13040, %U A068782 14175,14336,14640,15471,15632,16767,16928,18063,18224,19359,19375 %N A068782 Lesser of two consecutive numbers each divisible by a fourth power. %C A068782 The asymptotic density of this sequence is 1 - 2/zeta(4) + Product_{p prime} (1 - 2/p^4) = 0.001856185541538432217... - _Amiram Eldar_, Feb 16 2021 %C A068782 Below 9508685764, it suffices to check for n such that either n or n+1 is divisible by p^4 for some p <= 19. - _Charles R Greathouse IV_, Jul 17 2024 %H A068782 Charles R Greathouse IV, <a href="/A068782/b068782.txt">Table of n, a(n) for n = 1..10000</a> %e A068782 80 is a term as 80 and 81 both are divisible by a fourth power, 2^4 and 3^4 respectively. %t A068782 Select[ Range[2, 25000], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 3 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 3 &] %o A068782 (PARI) has(n)=vecmax(factor(n)[,2])>3 %o A068782 is(n)=has(n+1)&&has(n) \\ _Charles R Greathouse IV_, Dec 19 2018 %o A068782 (PARI) list(lim)=my(v=List(),x=1); forfactored(n=81,lim\1+1, if(vecmax(n[2][,2])>3, if(x,listput(v,n[1]-1),x=1),x=0)); Vec(v) \\ _Charles R Greathouse IV_, Dec 19 2018 %Y A068782 Subsequence of A068140. %Y A068782 Cf. A068780, A068781, A068783, A068784, A068785, A046101, A215267. %K A068782 nonn %O A068782 1,1 %A A068782 _Robert G. Wilson v_, Mar 04 2002 %E A068782 a(0) = 0 removed by _Charles R Greathouse IV_, Dec 19 2018