This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068803 #29 Jul 02 2023 17:59:36 %S A068803 2,3,5,7,19,29,37,47,59,79,97,397,499,599,1999,2999,3989,4999,29989, %T A068803 49999,59999,79999,199999,599999,799999,2999999,4999999,5999993, %U A068803 19999999,29999999,59999999,69999989,99999989,199999991,699999953,799999999,5999999989,6999999989 %N A068803 Smaller of two consecutive primes which have no common digits. %C A068803 Is the sequence finite or infinite? %C A068803 Except for 2, 3, 5, and 7, all such primes are of the form a*10^n-b with 1 <= a <= 8 and b mod 10 = 1, 3, 7 or 9. An example of a large pair is 10^101-203 and 10^101+3. The largest known pair of probable primes is 8*10^5002-6243 and 8*10^5002+14481. - _Lewis Baxter_, Mar 06 2023 %H A068803 Michael S. Branicky, <a href="/A068803/b068803.txt">Table of n, a(n) for n = 1..804</a> %e A068803 397 is a term as 397 and 401 are two consecutive primes with no common digits. %t A068803 First /@ Select[Partition[Prime[Range[10^6]], 2, 1], Intersection @@ IntegerDigits /@ # == {} &] (* _Jayanta Basu_, Aug 06 2013 *) %o A068803 (PARI) isok(p) = isprime(p) && (#setintersect(Set(digits(p)), Set(digits(nextprime(p+1)))) == 0); \\ _Michel Marcus_, Mar 27 2023 %o A068803 (Python) %o A068803 from itertools import count, islice %o A068803 from sympy import nextprime, prevprime %o A068803 def agen(): # generator of terms %o A068803 yield from [2, 3, 5] %o A068803 for d in count(2): %o A068803 for b in range(10**(d-1), 10**d, 10**(d-1)): %o A068803 p, q = prevprime(b), nextprime(b) %o A068803 if set(str(p)) & set(str(q)) == set(): %o A068803 yield p %o A068803 print(list(islice(agen(), 40))) # _Michael S. Branicky_, May 09 2023 %Y A068803 Cf. A076490. %K A068803 base,nonn %O A068803 1,1 %A A068803 _Amarnath Murthy_, Mar 06 2002 %E A068803 More terms from Larry Soule (lsoule(AT)gmail.com), Jun 21 2006 %E A068803 a(36) and beyond from _Michael S. Branicky_, May 09 2023