This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068858 #18 May 06 2024 11:04:17 %S A068858 3,15,195,4095,2477475,448422975,19384876786275, %T A068858 70676639845770308825475,11604095937711402889585984522057770447375, %U A068858 56023729629975618843823135187551800751351023283966800458449243286895375 %N A068858 a(1) = 3 = 1*3; a(n) = smallest multiple of a(n-1) which is a product of two consecutive odd numbers. %C A068858 The multiple is assumed to be nontrivial, i.e. a(n) > a(n-1) as otherwise all terms are equal to 3. - _Chai Wah Wu_, May 05 2024 %H A068858 Chai Wah Wu, <a href="/A068858/b068858.txt">Table of n, a(n) for n = 1..12</a> %e A068858 195 = 13*15 belongs to this sequence and the smallest multiple of 195 which is a product of two consecutive odd numbers is 4095 = 63*65. %p A068858 f:= proc(x) local V,V1,y; %p A068858 V:= map(t -> rhs(op(t))-1, [msolve(r^2=1,x)]); %p A068858 V:= map(t -> `if`(t*(t+2)=x, t + x, t), V); %p A068858 y:= min(map(t -> `if`(t::even, t+x, t), V)); %p A068858 y*(y+2) %p A068858 end proc: %p A068858 A[1]:= 3: %p A068858 for n from 2 to 11 do A[n]:= f(A[n-1]) od: %p A068858 seq(A[i],i=1..11); # _Robert Israel_, May 14 2017 %o A068858 (Python) %o A068858 from itertools import islice %o A068858 from sympy import sqrt_mod_iter %o A068858 def A068858_gen(): # generator of terms %o A068858 a = 3 %o A068858 while True: %o A068858 yield a %o A068858 b = a+1 %o A068858 for d in sqrt_mod_iter(1,a): %o A068858 if d**2-1 == a: %o A068858 d += a %o A068858 if d&1: %o A068858 d += a %o A068858 if d < b: %o A068858 b = d %o A068858 a = b**2-1 %o A068858 A068858_list = list(islice(A068858_gen(),11)) # _Chai Wah Wu_, May 05 2024 %Y A068858 Cf. A068857. %K A068858 nonn %O A068858 1,1 %A A068858 _Amarnath Murthy_, Mar 12 2002 %E A068858 More terms from _Sascha Kurz_, Mar 23 2002 %E A068858 Corrected by _Robert Israel_, May 14 2017