This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068896 #19 Aug 26 2021 17:00:13 %S A068896 11,1423,1607,1753,1973,2011,2213,2341,2543,2617,2671,2819,2837,3407, %T A068896 3461,3517,3571,3719,3847,4013,4637,4673,4691,4729,4783,4967,5023, %U A068896 5261,5519,5573,5591,5647,5683,5849,5867,6143,6217,6271,6473,6491,6529,6547,7043,7649,7759,8017,8053,8219,8237,8273,8291,8329,8677,9137,9173,9283,9467 %N A068896 Primes containing 2k digits in which the sum of the first k digits is that of the last k digits. %H A068896 David A. Corneth, <a href="/A068896/b068896.txt">Table of n, a(n) for n = 1..10000</a> %e A068896 2341 is a member with 2+3 = 4+1. %t A068896 Select[Prime[Range[169,1229]],Length[Union[Total/@TakeDrop[ IntegerDigits[ #],2]]] == 1&] (* The program generates all 56 4-digit terms. To generate all 3669 of the 6-digit terms, change the Range constants to (9593, 78498) and change the 2 to 3. *) (* _Harvey P. Dale_, Aug 15 2021 *) %o A068896 (Python) %o A068896 from sympy import primerange %o A068896 def sd(s): return sum(map(int, s)) %o A068896 def auptod(digits): %o A068896 alst = [] %o A068896 for d in range(2, digits+1, 2): %o A068896 for p in primerange(10**(d-1), 10**d): %o A068896 s = str(p) %o A068896 if sd(s[:len(s)//2]) == sd(s[len(s)//2:]): alst.append(p) %o A068896 return alst %o A068896 print(auptod(4)) # _Michael S. Branicky_, Aug 15 2021 %Y A068896 Cf. A240927. %K A068896 easy,nonn,base %O A068896 1,1 %A A068896 _Amarnath Murthy_, Mar 21 2002 %E A068896 Corrected and extended by _Harvey P. Dale_, Aug 15 2021 %E A068896 11 prepended by _David A. Corneth_, Aug 15 2021