cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068907 Number of partitions of n modulo 3.

This page as a plain text file.
%I A068907 #23 Jul 14 2022 06:41:15
%S A068907 1,1,2,0,2,1,2,0,1,0,0,2,2,2,0,2,0,0,1,1,0,0,0,1,0,2,0,1,1,2,0,2,0,0,
%T A068907 1,0,1,1,2,0,0,0,2,0,1,1,0,2,0,2,1,0,0,0,1,1,2,0,2,1,2,0,1,0,1,2,2,2,
%U A068907 0,2,0,0,1,1,2,0,2,1,2,2,0,1,1,2,2,2,1,2,0,1,2,1,2,2,2,1,2,0,1,1,1,2,0,2,0
%N A068907 Number of partitions of n modulo 3.
%C A068907 Of the partitions of numbers from 1 to 100000: 33344 are 0, 33193 are 1 and 33463 are 2 modulo 3.
%H A068907 Henry Bottomley, <a href="http://www.se16.info/js/partitions.htm">Partition calculators using java applets</a>
%H A068907 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A068907 a(n) = A010872(A000041(n)) = A068906(3, n)
%F A068907 a(n) = Pm(n,1) with Pm(n,k) = if k<n then (Pm(n-k,k) + Pm(n,k+1)) mod 3 else 0^(n*(k-n)). - _Reinhard Zumkeller_, Jun 09 2009
%t A068907 Table[ Mod[ PartitionsP@ n, 3], {n, 105}] (* _Robert G. Wilson v_, Mar 25 2011 *)
%o A068907 (PARI) a(n) = numbpart(n) % 3; \\ _Michel Marcus_, Jul 14 2022
%Y A068907 Cf. A040051, A068908, A068909, A020919.
%K A068907 nonn
%O A068907 0,3
%A A068907 _Henry Bottomley_, Mar 05 2002