cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068927 Number of incongruent ways to tile a 2 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

This page as a plain text file.
%I A068927 #9 Jun 13 2015 00:50:31
%S A068927 1,1,2,3,4,6,8,12,16,24,33,49,69,102,145,214,307,452,653,960,1393,
%T A068927 2046,2978,4371,6376,9354,13665,20041,29307,42972,62884,92191,134974,
%U A068927 197858,289772,424746,622198,911970,1336121,1958319,2869417,4205538
%N A068927 Number of incongruent ways to tile a 2 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.
%H A068927 R. J. Mathar, <a href="http://arxiv.org/abs/1311.6135">Paving rectangular regions with rectangular tiles,....</a>, arXiv:1311.6135 [math.CO], Table 9.
%H A068927 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,-1,1,-1,0,-1).
%F A068927 For n >= 12, a(n) = a(n-1) + a(n-2) - a(n-5) + a(n-6) - a(n-7) - a(n-9).
%F A068927 G.f.: x*(1-x^10-2*x^8-2*x^6-x^4) / ((x^3+x-1) * (x^6+x^2-1)) [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]
%Y A068927 Cf. A068921 for total number of tilings, A068926 for more info.
%K A068927 easy,nonn
%O A068927 1,3
%A A068927 _Dean Hickerson_, Mar 11 2002
%E A068927 G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.