cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068926 Table read by antidiagonals: ti(r,s) is the number of incongruent ways to tile an r X s room with 1 X 2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 3, 0, 3, 0, 1, 4, 2, 2, 4, 1, 0, 6, 0, 1, 0, 6, 0, 1, 8, 2, 2, 2, 2, 8, 1, 0, 12, 0, 2, 0, 2, 0, 12, 0, 1, 16, 4, 2, 1, 1, 2, 4, 16, 1, 0, 24, 0, 3, 0, 1, 0, 3, 0, 24, 0, 1, 33, 5, 3, 1, 1, 1, 1, 3, 5, 33, 1, 0, 49, 0, 4, 0, 1, 0, 1, 0, 4, 0, 49, 0
Offset: 0

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Examples

			Table begins:
  0, 1, 0, 1, 0, 1, 0, ...
  1, 1, 2, 3, 4, 6, 8, ...
  0, 2, 0, 2, 0, 2, 0, ...
  1, 3, 2, 1, 2, 2, 2, ...
  0, 4, 0, 2, 0, 1, 0, ...
  1, 6, 2, 2, 1, 1, 1, ...
  0, 8, 0, 2, 0, 1, 0, ...
  ...
		

Crossrefs

Cf. A068920 (total number of tilings), A052270 (count by area).
Cf. A068927 (row 2), A068928 (row 3), A068929 (row 4), A068930 (row 5), A068931 (row 6).

Programs

  • Mathematica
    (* See link above for Mathematica programs. *)
    c[r_, s_] := Which[s<0, 0, r==1, 1 - Mod[s, 2], r == 2, c1[2, s] + c2[2, s] + Boole[s == 0], OddQ[r], c[r, s] = c[r, s - r + 1] + c[r, s - r - 1] + Boole[s == 0], EvenQ[r], c[r, s] = c1[r, s] + c2[r, s] + Boole[s == 0]];
    c1[r_, s_] := Which[s <= 0, 0, r == 2, c[2, s - 1], EvenQ[r], c2[r, s - 1] + Boole[s == 1]];
    c2[r_, s_] := Which[s <= 0, 0, r == 2, c2[2, s] = c1[2, s - 2] + Boole[s == 2], EvenQ[r], c2[r, s] = c1[r, s - r + 2] + c1[r, s - r] + Boole[s == r - 2] + Boole[s == r]];
    cs[r_, s_] := Which[s < 0, 0, r == 1, c[r, s], r == 2, cs[2, s] = c1s[r, s] + c2s[r, s] + Boole[s == 0], OddQ[r], cs[r, s] = cs[r, s - 2 r + 2] + cs[r, s - 2 r - 2] + Boole[s == 0] + Boole[s == r - 1] + Boole[s == r + 1], EvenQ[r], cs[r, s] = c1s[r, s] + c2s[r, s] + Boole[s == 0]];
    c1s[r_, s_] := Which[s <= 0, 0, r == 2, cs[r, s - 2] + Boole[s == 1], EvenQ[r], c2s[r, s - 2] + Boole[s == 1]];
    c2s[r_, s_] := Which[s <= 0, 0, r == 2, c2s[2, s] = c1s[2, s - 4] + Boole[s == 2], EvenQ[r], c2s[r, s] = c1s[r, s - 2 r + 4] + c1s[r, s - 2 r] + Boole[s == r - 2] + Boole[s == r]];
    ti[r_, s_] := Which[r > s, ti[s, r], r == s, 1 - Mod[r, 2], True, (c[r, s] + cs[r, s])/2];
    A068926[n_] := Module[{x}, x = Floor[(Sqrt[8 n + 1] - 1)/2]; ti[n + 1 - x (x + 1)/2, (x + 1) (x + 2)/2 - n]];
    Table[A068926[n], {n, 0, 100}] (* Jean-François Alcover, May 12 2017, copied and adapted from Dean Hickerson's programs *)

A068925 Number of ways to tile a 6 X n room with 1x2 Tatami mats. At most 3 Tatami mats may meet at a point.

Original entry on oeis.org

1, 9, 6, 3, 2, 2, 2, 1, 1, 2, 3, 4, 3, 3, 3, 4, 6, 6, 7, 6, 7, 9, 10, 13, 12, 14, 15, 17, 22, 22, 27, 27, 31, 37, 39, 49, 49, 58, 64, 70, 86, 88, 107, 113, 128, 150, 158, 193, 201, 235, 263, 286, 343, 359, 428, 464, 521, 606, 645, 771, 823, 949, 1070, 1166, 1377, 1468
Offset: 1

Views

Author

Dean Hickerson, Mar 11 2002

Keywords

Comments

For n >= 12, a(n) = a(n-5) + a(n-7).

Crossrefs

Cf. A068931 for incongruent tilings, A068920 for more info.

Formula

G.f.: x*(1-2*x^10-6*x^9-11*x^8-6*x^7-7*x^6+x^5+2*x^4+3*x^3+6*x^2+9*x)/(1-x^7-x^5) [From Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009]

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.
Showing 1-2 of 2 results.