cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068942 a(n) = Bo(n^2), n=0,1..., where Bo(n) are the ordered Bell numbers, A000670.

This page as a plain text file.
%I A068942 #25 Jan 17 2022 08:06:19
%S A068942 1,1,75,7087261,5315654681981355,106697365438475775825583498141,
%T A068942 144199280951655469628360978109406917583513090155,
%U A068942 27656793065414932606012896651489726461435178241015434306518713649426461
%N A068942 a(n) = Bo(n^2), n=0,1..., where Bo(n) are the ordered Bell numbers, A000670.
%H A068942 Seiichi Manyama, <a href="/A068942/b068942.txt">Table of n, a(n) for n = 0..20</a>
%F A068942 a(n) = Sum_{k>=1} (k^(n^2))/2^(k+1); this is the analog of the Dobinski formula.
%F A068942 Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)=int(x^n*(sum(exp(-ln(x)^2/(4*ln(k))) / (2^k*sqrt(ln(k))), k=2..infinity)/(4*sqrt(Pi)*x)+Dirac(x-1)/4), x=0..infinity).
%F A068942 a(n) ~ (n^2)! / (2 * log(2)^(n^2 + 1)). - _Vaclav Kotesovec_, Jun 08 2021
%t A068942 a[n_] := PolyLog[-n^2, 1/2]/2; a[0] = 1; Table[a[n], {n, 0, 7}] (* _Jean-François Alcover_, Mar 30 2016 *)
%t A068942 Table[Sum[k!*StirlingS2[n^2, k], {k, 0, n^2}], {n, 0, 10}] (* _Vaclav Kotesovec_, Jun 08 2021 *)
%o A068942 (PARI) a(n) = sum(k=0, n^2, k!*stirling(n^2, k, 2)); \\ _Seiichi Manyama_, Jan 17 2022
%Y A068942 Cf. A000670, A068939, A249938, A249941.
%K A068942 nonn
%O A068942 0,3
%A A068942 _Karol A. Penson_, Mar 09 2002