A068943 a(n) = f(n, n, n), where f is the generalized super falling factorial (see comments for definition.).
1, 2, 24, 331776, 2524286414780230533120, 18356962141505758798331790171539976807981714702571497465907439808868887035904000000
Offset: 1
Keywords
Examples
a(3) = 24 since (4-1)^binomial(1+3-2,1-1) * (4-2)^binomial(2+3-2,2-1) * (4-3)^binomial(3+3-2,3-1) = 3^1 * 2^3 * 1 = 24.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..7
Programs
-
Maple
f := (x,p,r)->`if`(r<>0,`if`(p>0,product((x-m+1)^binomial(m+r-2,m-1),m=1..p),1),x); f(n,n,n);
-
PARI
a(n)=prod(m=1,n, (n-m+1)^binomial(m+n-2,m-1)) \\ Charles R Greathouse IV, Oct 30 2021
-
Python
from math import comb, prod def a(n): return prod((n-m+1)**comb(m+n-2, m-1) for m in range(1, n+1)) print([a(n) for n in range(1, 8)]) # Michael S. Branicky, Apr 09 2023
Formula
a(n) = Product_{m = 1..n} (n-m+1)^binomial(m+n-2, m-1).
Extensions
Edited by David Wasserman, Mar 14 2003
Comments