This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068963 #40 Jun 19 2022 02:21:30 %S A068963 1,5,19,37,101,95,295,293,505,505,1211,703,2029,1475,1919,2341,4625, %T A068963 2525,6499,3737,5605,6055,11639,5567,12601,10145,13627,10915,23549, %U A068963 9595,28831,18725,23009,23125,29795,18685,49285,32495,38551,29593 %N A068963 a(n) = Sum_{d|n} phi(d^3). %H A068963 Harvey P. Dale, <a href="/A068963/b068963.txt">Table of n, a(n) for n = 1..1000</a> %F A068963 Also Sum_{d|n} d*phi(d^2), or Sum_{d|n} d^2*phi(d). %F A068963 Also Sum_{k=1..n} (n/gcd(n, k))^2 = Sum_{k=1..n} (lcm(n, k)/k)^2. - _Vladeta Jovovic_, Dec 29 2002 %F A068963 Multiplicative with a(p^e) = 1 + p^2 * (p-1)*(p^(3e)-1)/(p^3-1). %F A068963 G.f.: Sum_{k>=1} k^2*phi(k)*x^k/(1 - x^k). - _Ilya Gutkovskiy_, Mar 10 2018 %F A068963 Dirichlet g.f.: Sum_{n>=1} a(n) / n^s = zeta(s) * zeta(s-3) / zeta(s-2). - _Werner Schulte_, Feb 18 2021 %F A068963 Sum_{k=1..n} a(k) ~ Pi^2 * n^4 / 60. - _Vaclav Kotesovec_, Aug 20 2021 %t A068963 Table[Total[EulerPhi[Divisors[n]^3]],{n,50}] (* _Harvey P. Dale_, Feb 24 2013 *) %t A068963 f[p_, e_] := p^2*(p - 1)*(p^(3 e) - 1)/(p^3 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* _Amiram Eldar_, Jun 19 2022 *) %o A068963 (PARI) a(n) = sumdiv(n, d, eulerphi(d^3)); \\ _Michel Marcus_, Mar 10 2018 %Y A068963 Cf. A000010, A057660, A056789. %K A068963 easy,nonn,mult %O A068963 1,2 %A A068963 _Benoit Cloitre_, Apr 06 2002