This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A068970 #32 Jan 22 2024 13:02:53 %S A068970 1,9,55,137,501,495,2059,2185,4429,4509,13311,7535,26365,18531,27555, %T A068970 34953,78609,39861,123463,68637,113245,119799,267675,120175,313001, %U A068970 237285,358723,282083,682893,247995,893731,559241,732105,707481,1031559,606773,1823509 %N A068970 a(n) = Sum_{d|n} phi(d^4). %H A068970 Robert Israel, <a href="/A068970/b068970.txt">Table of n, a(n) for n = 1..10000</a> %F A068970 Also Sum_{d|n} d^m*phi(d^(4-m)) for m=0, 1, 2, 3. %F A068970 Multiplicative with a(p^e) = 1 + p^3 * (p-1)(p^(4e)-1)/(p^4-1). %F A068970 G.f.: Sum_{k>=1} k^3*phi(k)*x^k/(1 - x^k). - _Ilya Gutkovskiy_, Mar 10 2018 %F A068970 Sum_{k=1..n} a(k) ~ c * n^5, where c = zeta(5)/(5*zeta(2)) = 0.126075... . - _Amiram Eldar_, Dec 01 2022 %F A068970 From _Peter Bala_, Jan 21 2024: (Start) %F A068970 a(n) = Sum_{k = 1..n} (n/gcd(k, n))^3 = Sum_{k = 1..n} (lcm(k, n)/k)^3. %F A068970 Dirichlet g.f.: zeta(s) * zeta(s-4)/zeta(s-3). (End) %p A068970 f:= n -> add(numtheory:-phi(d^4),d=numtheory:-divisors(n)): %p A068970 map(f, [$1..100]); # _Robert Israel_, Sep 13 2018 %t A068970 Table[Total[EulerPhi[Divisors[n]^4]], {n, 40}] (* _Vincenzo Librandi_, Sep 13 2018 *) %t A068970 f[p_, e_] := 1 + p^3*(p - 1)*(p^(4*e) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* _Amiram Eldar_, Dec 01 2022 *) %o A068970 (PARI) a(n) = sumdiv(n, d, eulerphi(d^4)); \\ _Michel Marcus_, Mar 10 2018 %Y A068970 Cf. A000010, A013661, A013663, A057660, A068963, A189393. %K A068970 easy,nonn,mult %O A068970 1,2 %A A068970 _Benoit Cloitre_, Apr 06 2002