A068982 Decimal expansion of the limit of the product of a modified zeta function.
4, 3, 5, 7, 5, 7, 0, 7, 6, 7, 7, 2, 6, 4, 5, 5, 9, 3, 7, 3, 7, 6, 2, 2, 9, 7, 0, 1, 2, 0, 9, 4, 1, 8, 6, 3, 4, 9, 6, 8, 6, 4, 1, 7, 4, 9, 2, 4, 3, 6, 8, 0, 3, 8, 1, 7, 5, 4, 6, 0, 9, 8, 9, 0, 9, 2, 3, 0, 0, 2, 3, 6, 0, 1, 6, 1, 0, 3, 0, 5, 3, 1, 8, 8, 0, 4, 3, 9, 7, 9, 5, 9, 7, 7, 2, 3, 4, 0, 6, 5, 3, 7, 6, 9
Offset: 0
Examples
0.43575707...
Links
- Robert Price, Table of n, a(n) for n = 0..999
- Melanie Matchett Wood, Probability theory for random groups arising in number theory, arXiv:2301.09687 [math.NT], 2023. See Theorem 3.6 at p. 21.
Programs
-
Maple
with(numtheory); evalf(Product(Sum('mobius(k)/k^n','k'=1..infinity),n=2..infinity),40); Note: For practical reasons you should change "infinity" to some finite value. evalf(product(1/Zeta(n), n=2..infinity), 120); # Vaclav Kotesovec, Oct 22 2014
-
Mathematica
digits = 104; 1/NProduct[ Zeta[n], {n, 2, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> 1000] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 15 2013 *)
Formula
Equals Product_{k=1..oo} Sum_{n=2..oo} mu(k)/k^n.
Equals 1/A021002. - R. J. Mathar, Jan 31 2009
Extensions
Corrected and extended by R. J. Mathar, Jan 31 2009
Example corrected by R. J. Mathar, Jul 23 2009
Comments