cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068987 a(n) is the first position in the digit sequence 3,1,4,1,5,9,.... of Pi where the pattern "1,2,...,n" occurs (where position of the initial 3 is 1).

This page as a plain text file.
%I A068987 #55 Jan 29 2020 04:40:33
%S A068987 2,149,1925,13808,49703,2458886,9470345,186557267,523551503,
%T A068987 191278379840,4368196101672
%N A068987 a(n) is the first position in the digit sequence 3,1,4,1,5,9,.... of Pi where the pattern "1,2,...,n" occurs (where position of the initial 3 is 1).
%C A068987 1. We may never know if a(n) is defined for all n.
%C A068987 2. We split up the digits of any number > 9 in the pattern, e.g., if n = 11, we search for the pattern "1,2,3,4,5,6,7,8,9,1,0,1,1".
%C A068987 3. The pattern "1,2,3,4,5,6" does not occur before the 100,000th term in the digit sequence of Pi.
%C A068987 Two more terms a(6) and a(7) were found via the referenced Pi-Search link [Andersen], through which 100 million digits of Pi are currently available. - _Rick L. Shepherd_, Oct 10 2002
%C A068987 200 million digits now available at Pi-Search page. - _Rick L. Shepherd_, Aug 06 2006
%C A068987 This sequence uses position = 1 for the initial digit 3 of Pi, while A121280(n) = a(n)-1 starts counting at 0, as does the "Pi search page" and sequences A035117, A050279 - A050287, A048940, A096755 - A096763. - _M. F. Hasler_, Mar 18 2017
%C A068987 a(10) > 2*10^9. - _M. F. Hasler_, Apr 13 2019
%C A068987 a(12) > 22*10^12. - _Dmitry Petukhov_, Jan 29 2020
%D A068987 Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, p. 32.
%H A068987 D. G. Andersen, <a href="http://www.angio.net/pi/piquery">The Pi-Search Page</a>
%H A068987 SubIdiom.com, <a href="http://www.subidiom.com/pi">Irrational numbers search engine: π = 3.14159...</a>. (Search within 2*10^9 digits, since at least 2009, maybe 2002.)
%H A068987 Peter Trüb, <a href="https://pi2e.ch/blog/2017/03/10/pi-digits-download/">22.4 trillion digits of pi</a>
%F A068987 a(n) = A121280(n) + 1. - _M. F. Hasler_, Apr 13 2019
%t A068987 p = ToString[N[Pi, 50000]/10]; t = {1, 12, 123, 1234, 12345}; g[n_] := StringPosition[p, ToString[n]][[1]][[1]] - 2; Table[g[t[[i]]], {i, 1, 5}]
%Y A068987 First occurrence of n times the same digit: A035117 (n '1's), A050281 (n '2's), A050282, A050283, A050284, A050286, A050287, A048940 (n '9's).
%Y A068987 First occurrence of exactly n times the same digit: A096755 (exactly n '1's), A096756, A096757, A096758, A096759, A096760, A096761, A096762, A096763 (exactly n '9's), A050279 (exactly n '0's).
%Y A068987 First occurrence of n: A176341; of concatenate(1,...,n): A121280 = A068987 - 1.
%Y A068987 Cf. A000796: Decimal expansion (or digits) of Pi.
%K A068987 nonn,base,more
%O A068987 1,1
%A A068987 _Joseph L. Pe_, Apr 01 2002
%E A068987 More terms from _Rick L. Shepherd_, Oct 10 2002
%E A068987 a(8) from _Rick L. Shepherd_, Aug 06 2006
%E A068987 Additional term a(9), using subidiom search engine, from _M. F. Hasler_, Apr 13 2019
%E A068987 a(10)-a(11) from _Dmitry Petukhov_, Jan 16 2020