This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A069011 #31 Aug 07 2025 13:10:27 %S A069011 0,1,2,4,5,8,9,10,13,18,16,17,20,25,32,25,26,29,34,41,50,36,37,40,45, %T A069011 52,61,72,49,50,53,58,65,74,85,98,64,65,68,73,80,89,100,113,128,81,82, %U A069011 85,90,97,106,117,130,145,162,100,101,104,109,116,125,136,149,164,181,200 %N A069011 Triangle with T(n,k) = n^2 + k^2. %C A069011 For any i,j >=0 a(i)*a(j) is a member of this sequence, since (a^2 + b^2)*(c^2 + d^2) = (a*c + b*d)^2 + (a*d - b*c)^2. - _Boris Putievskiy_, May 05 2013 %C A069011 A227481(n) = number of squares in row n. - _Reinhard Zumkeller_, Oct 11 2013 %C A069011 Norm of the complex numbers n +- i*k and k +- i*n, where i denotes the imaginary unit. - _Stefano Spezia_, Aug 07 2025 %H A069011 Reinhard Zumkeller, <a href="/A069011/b069011.txt">Rows n = 0..120 of triangle, flattened</a> %F A069011 T(n+1,k+1) = T(n,k) + 2*(n+k+1), k=0..n; T(n+1,0) = T(n,0) + 2*n + 1. - _Reinhard Zumkeller_, Oct 11 2013 %F A069011 G.f.: x*(1 + 2*y + 5*x^3*y^2 - x^2*y*(2 + 5*y) + x*(1 - 4*y + 2*y^2))/((1 - x)^3*(1 - x*y)^3). - _Stefano Spezia_, Aug 04 2025 %e A069011 Triangle T(n,k) begins: %e A069011 0; %e A069011 1, 2; %e A069011 4, 5, 8; %e A069011 9, 10, 13, 18; %e A069011 16, 17, 20, 25, 32; %e A069011 25, 26, 29, 34, 41, 50; %e A069011 36, 37, 40, 45, 52, 61, 72; %e A069011 49, 50, 53, 58, 65, 74, 85, 98; %e A069011 64, 65, 68, 73, 80, 89, 100, 113, 128; %e A069011 81, 82, 85, 90, 97, 106, 117, 130, 145, 162; %e A069011 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200; %e A069011 ... %t A069011 Table[n^2 + k^2, {n, 0, 12}, {k, 0, n}] (* _Paolo Xausa_, Aug 07 2025 *) %o A069011 (Haskell) %o A069011 a069011 n k = a069011_tabl !! n !! k %o A069011 a069011_row n = a069011_tabl !! n %o A069011 a069011_tabl = map snd $ iterate f (1, [0]) where %o A069011 f (i, xs@(x:_)) = (i + 2, (x + i) : zipWith (+) xs [i + 1, i + 3 ..]) %o A069011 -- _Reinhard Zumkeller_, Oct 11 2013 %Y A069011 Cf. A001481 for terms in this sequence, A000161 for number of times each term appears, A048147 for square array. %Y A069011 Column k=0 gives A000290. %Y A069011 Main diagonal gives A001105. %Y A069011 Row sums give A132124. %Y A069011 T(2n,n) gives A033429. %K A069011 easy,nonn,tabl %O A069011 0,3 %A A069011 _Henry Bottomley_, Apr 02 2002