cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069017 Triangular numbers of the form k^2 + k + 1.

This page as a plain text file.
%I A069017 #39 Jun 05 2022 23:21:27
%S A069017 1,3,21,91,703,3081,23871,104653,810901,3555111,27546753,120769111,
%T A069017 935778691,4102594653,31788928731,139367449081,1079887798153,
%U A069017 4734390674091,36684396208461,160829915470003,1246189583289511,5463482735306001,42333761435634903
%N A069017 Triangular numbers of the form k^2 + k + 1.
%H A069017 G. C. Greubel, <a href="/A069017/b069017.txt">Table of n, a(n) for n = 1..1001</a>
%H A069017 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,34,-34,-1,1).
%F A069017 G.f.: (x^4 + 2*x^3 - 16*x^2 + 2*x + 1)/((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)).
%F A069017 From _Zak Seidov_, Sep 25 2010: (Start)
%F A069017 a(n) = 34*a(n-2) - a(n-4) - 11.
%F A069017 a(n) = 2*A124174(n) + 1. (End)
%F A069017 a(n) = (A077443(n)^2 - 1)/2. - _Amiram Eldar_, Dec 01 2018
%t A069017 Do[a = n(n + 1) + 1; b = Floor[Sqrt[2a]]; If[b(b + 1) == 2a, Print[a]], {n, 1, 106}] (* _Robert G. Wilson v_ *)
%t A069017 Select[Table[n^2+n+1,{n,0,206*10^6}],OddQ[Sqrt[8#+1]]&] (* The program takes a long time to run. *) (* _Harvey P. Dale_, Sep 22 2017 *)
%t A069017 CoefficientList[Series[(x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)), {x,0,50}], x] (* _G. C. Greubel_, Dec 01 2018 *)
%o A069017 (PARI) Vec((x^4+2*x^3-16*x^2+2*x+1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)) +O(x^66)) /* _Joerg Arndt_, Mar 25 2013 */
%o A069017 (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2)) )); // _G. C. Greubel_, Dec 01 2018
%o A069017 (Sage) s=((x^4 +2*x^3 -16*x^2 +2*x +1)/((1-x)*(1-6*x+x^2)*(1+6*x+x^2))).series(x, 50); s.coefficients(x, sparse=False) # _G. C. Greubel_, Dec 01 2018
%Y A069017 Cf. A124174.
%K A069017 nonn,easy
%O A069017 1,2
%A A069017 _Amarnath Murthy_, Apr 02 2002
%E A069017 Program and terms from _Robert G. Wilson v_
%E A069017 a(18)-a(22) from _Alex Ratushnyak_, Mar 23 2013